高考数学知识点归纳
在年少学习的日子里,大家最熟悉的就是知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。哪些才是我们真正需要的知识点呢?以下是小编帮大家整理的高考数学知识点归纳,希望对大家有所帮助。
高考数学知识点归纳 1
1、平面向量数量积:已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2
2、平面向量数量积具有以下性质:
1、a·a=|a|2≥0
2、a·b=b·a
3、k(a·b)=(ka)b=a(kb)
4、a·(b+c)=a·b+a·c
5、a·b=0<=>a⊥b
6、a=kb<=>a//b
7、e1·e2=|e1||e2|cosθ
高考数学知识点归纳 2
一、数列递推思想在某些概率问题方面的应用
例:已知,正四面体中,一枚棋子从一个顶点出发,选任何一条棱移动的概率都相等,每次移动前,掷一次骰子,出现偶数点,则棋子原地不动;若出现奇数点,则移动。 一枚棋子从点开始移动到点,求掷次骰子,才到达点的概率。
点拨:此题位置不确定,掷点奇偶不定,关系复杂,利用递推思想是最有郊的方法,通过构建递推数列,问题迎刃而解。一般存在相互依存关系问题的概率都可运用递推思路去解决。
综上所述,灵活运用递推思维,构造递推数列解决某些问题,可以起到化繁为简、化抽象为具体的奇效。 其运用过程中,融高度的逻辑性于一体,是数学中化归思想的深度体现,因此在平时高考复习中,应引起我们足够的重视。
二、数列递推思想在计数方面的应用
例:将一个圆分成个扇形部分,依次为,每一扇形分别用种不同颜色中任一种涂色,其中相邻部分涂不同颜色,则不同的染色方案有多少种?
点拨:在一些复杂的计数问题中,运用数列递推思维组建递推关系可起到“疱丁解牛”的作用,使问题清晰而明了。需要说明的是,此题涉及到计数中的染色问题,通过递归关系得到一个一般化的'通式,此式在染色问题中应用相当广泛。
三、数列在归纳推理中应用
例:一白珠下面挂一黑珠,每一黑珠下挂一黑珠与一白珠,则第11行黑珠的个数为________。
[…第一行][…第二行][…第三行][…第四行][…第五行][…第六行]
点拨:此题通过运用递推思想得到一个递推关系,正是著名的“斐波拉契数列”。 在一些数列归纳通项的推理中,利用递推思想,构建递推公式,使有限拓展到无限,由特殊变成一般规律,这是解决此类问题常见思路与方法,同理这也体现了合理推理的精髓所在。
高考数学知识点归纳 3
1.高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从函数A到函数B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域.
注意:
函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的函数.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
u相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)
高考数学知识点归纳 4
复数是高中代数的重要内容,在高考试题中约占8%-10%,一般的出一道基础题和一道中档题,经常与三角、解析几何、方程、不等式等知识综合.本章主要内容是复数的概念,复数的代数、几何、三角表示方法以及复数的运算.方程、方程组,数形结合,分域讨论,等价转化的数学思想与方法在本章中有突出的体现.而复数是代数,三角,解析几何知识,相互转化的枢纽,这对拓宽学生思路,提高学生解综合习题能力是有益的.数、式的运算和解方程,方程组,不等式是学好本章必须具有的基本技能.简化运算的意识也应进一步加强.
在本章学习结束时,应该明确对二次三项式的因式分解和解一元二次方程与二项方程可以画上圆满的句号了,对向量的运算、曲线的复数形式的方程、复数集中的数列等边缘性的知识还有待于进一步的研究.
复数中的难点
(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.
(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.
(3)复数的辐角主值的求法.
(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.
高考数学知识点归纳 5
高考数学知识点:动点的轨迹方程动点的轨迹方程:
在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。
求动点的轨迹方程的基本方法:
直接法、定义法、相关点法、参数法、交轨法等。
1、直接法:
如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;
用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
2、定义法:
利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,高考生物,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。定义法的关键是条件的转化??转化成某一基本轨迹的定义条件;
3、相关点法:
动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。
4、参数法:
求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。要特别注意消参前后保持范围的等价性。多参问题中,根据方程的观点,引入n个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。
5、交轨法:
求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去参数,得到交点的两个坐标间的关系即可。交轨法实际上是参数法中的一种特殊情况。
求轨迹方程的步骤:
(l)建系,设点建立适当的坐标系,设曲线上任意一点的坐标为M(x,y);
(2)写集合写出符合条件P的点M的集合P(M);
(3)列式用坐标表示P(M),列出方程f(x,y)=0;
(4)化简化方程f(x,y)=0为最简形式;
(5)证明证明以化简后的方程的解为坐标的点都是曲线上的点,
【高考数学知识点归纳】上海花千坊相关的文章:
高考数学的知识点归纳11-15
数学高考精选知识点归纳11-08
高考数学几何知识点归纳09-10
高考数学知识点归纳11篇11-14
高考数学的知识点汇总归纳11-08
高考化学知识点归纳11-12
高考数学轨迹方程的求解知识点归纳整理09-15
高考历史知识点归纳08-24
高考文综知识点归纳08-24