- 相关推荐
实际问题与一元二次方程的教案范文
作为一名优秀的教育工作者,有必要进行细致的教案准备工作,借助教案可以让教学工作更科学化。教案应该怎么写呢?下面是小编整理的实际问题与一元二次方程的教案范文,欢迎大家借鉴与参考,希望对大家有所帮助。
实际问题与一元二次方程的教案 篇1
教学内容
由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题。
教学目标
掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题。
通过复习二元一次方程组等建立数学模型,并利用它解决实际问题,引入用“倍数关系”建立数学模型,并利用它解决实际问题。
重难点关键
1、重点:用“倍数关系”建立数学模型
2、难点与关键:用“倍数关系”建立数学模型
教学过程一、复习引入
(学生活动)
问题1:列方程解应用题
下表是某一周甲、乙两种股票每天每股的收盘价(收盘价:股票每天交易结果时的价格):星期一二三四五甲12元、12.5元、12.9元、12.45元、12.75元、乙13.5元、13.3元、13.9元、13.4元、13.75元某人在这周内持有若干甲、乙两种股票,若按照两种股票每天的收盘价计算(不计手续费、税费等),则在他帐户上,星期二比星期一增加200元,星期三比星期二增加1300元,这人持有的甲、乙股票各多少股?
老师点评分析:一般用直接设元,即问什么就设什么,即设这人持有的甲、乙股票各x、y张,由于从表中知道每天每股的收盘价,因此,两种股票当天的帐户总数就是x或y乘以相应的每天每股的收盘价,再根据已知的等量关系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式。
解:设这人持有的甲、乙股票各x、y张。
则解得
答:(略)
二、探索新知
上面这道题大家都做得很好,这是一种利用二元一次方程组的数量关系建立的数学模型,那么还有没有利用其它形式,也就是利用我们前面所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问题。
(学生活动)
问题2:某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?
老师点评分析:直接假设二月份、三月份生产电视机平均增长率为x。因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二月份的基础上以二月份比一月份增长的同样“倍数”增长,即(1+x)+(1+x)x=(1+x)2,那么就很容易从第一季度总台数列出等式。
解:设二月份、三月份生产电视机平均增长的百分率为x,则1+(1+x)+(1+x)2=3.31
去括号:1+1+x+1+2x+x2=3.31
整理,得:x2+3x—0.31=0
解得:x=10%
答:(略)
实际问题与一元二次方程的教案 篇2
学习目标
1、一元二次方程的求根公式的推导
2、会用求根公式解一元二次方程.
3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯
学习重、难点
重点:一元二次方程的求根公式.
难点:求根公式的条件:b2-4ac≥0
学习过程
一、自学质疑:
1、用配方法解方程:2x2-7x+3=0.
2、用配方解一元二次方程的步骤是什么?
3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?
二、交流展示:
刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?
三、互动探究:
一般地,对于一元二次方程ax2+bx+c=0
(a≠0),当b2-4ac≥0时,它的根是
用求根公式解一元二次方程的方法称为公式法
由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.
注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号.
(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac<0时,方程没有实数解.就不必再代入公式计算了.
四、精讲点拨:
例1、课本例题
总结:其一般步骤是:
(1)把方程化为一般形式,进而确定a、b,c的.值.(注意符号)
(2)求出b2-4ac的值.(先判别方程是否有根)
(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出的值,最后写出方程的根.
例2、解方程:
(1)2x2-7x+3=0(2)x2-7x-1=0
(3)2x2-9x+8=0(4)9x2+6x+1=0
五、纠正反馈:
做书上第P90练习。
实际问题与一元二次方程的教案 篇3
一、复习目标:
1、能说出一元二次方程及其相关概念。
2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。
3、能灵活应用一元二次方程的知识解决相关问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力。
二、复习重难点:
重点:一元二次方程的解法和应用。
难点:应用一元二次方程解决实际问题的方法。
三、知识回顾:
1、一元二次方程的定义:
2、一元二次方程的常用解法有:
配方法的一般过程是怎样的?
3、一元二次方程在生活中有哪些应用?请举例说明。
4、利用方程解决实际问题的关键是。
在解决实际问题的过程中,怎样判断求得的结果是否合理?请举例说明。
四、例题解析:
例1、填空
1、当m时,关于x的方程(m-1)+5+mx=0是一元二次方程。
2、方程(m2-1)x2+(m-1)x+1=0,当m时,是一元二次方程;当m时,是一元一次方程。
3、将一元二次方程x2-2x-2=0化成(x+a)2=b的形式是;此方程的根是。
4、用配方法解方程x2+8x+9=0时,应将方程变形为()
A.(x+4)2=7B.(x+4)2=-9
C.(x+4)2=25D.(x+4)2=-7
学习内容学习随记
例2、解下列一元二次方程
(1)4x2-16x+15=0(用配方法解)(2)9-x2=2x2-6x(用分解因式法解)
(3)(x+1)(2-x)=1(选择适当的方法解)
例3、1、新竹文具店以16元/支的价格购进一批钢笔,根据市场调查,如果以20元/支的价格销售,每月可以售出200支;而这种钢笔的售价每上涨1元就少卖10支.现在商店店主希望销售该种钢笔月利润为1350元,则该种钢笔该如何涨价?此时店主该进货多少?
2、如图,在Rt△ACB中,∠C=90°,AC=6m,BC=8m,点P、Q同时由A、B两点出发分别沿AC,BC方向向点C匀速运动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半?
【实际问题与一元二次方程的教案】上海花千坊相关的文章:
一元二次方程的相关教案12-04
一元二次方程的教案范例12-03
一元二次方程的应用教案12-03
一元二次方程的应用教案范文11-27
一元二次方程数学教案11-28
一元二次方程的教案设计12-03
数学教案:一元二次方程12-03
用公式解一元二次方程教案11-26
一元二次方程教案教学计划11-26