上海花千坊

教学设计

《植树问题》教学设计

时间:2024-03-28 11:01:06 佩莹 教学设计 我要投稿

《植树问题》教学设计(通用15篇)

  作为一位无私奉献的人民教师,时常需要用到教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那么大家知道规范的教学设计是怎么写的吗?以下是小编精心整理的《植树问题》教学设计,希望对大家有所帮助。

《植树问题》教学设计(通用15篇)

  《植树问题》教学设计 1

  教学目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系,使学生能理解间隔数与植树棵数之间的规律,利用规律来解决简单植树的问题。

  2、通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  教学重、难点:

  引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。

  教学过程:

  一、动手种树,初步感知

  1、创设情景,理解题意

  [出示要求]:在操场边上,有一条20米长的小路,学校计划在小路的一边种树,请按照每隔5米种一棵的要求,设计一份植树方案,并说明你的设计理由。

  师:从这份要求上,你能获得哪些信息? (20米长的小路,一边,每隔5米种一棵)

  师:每隔5米是什么意思? (两棵树之间的距离是五米,每两棵树的距离都相等,两棵树之间的间隔是5米)

  2、设计方案,动手种树

  师:了解了已知条件,请同学们以同桌为一个小组,设计一份植树方案。可以用这条线段代表20米的小路。 用你们喜欢的图案表示树,把你们设计的方案画一画。 (小组活动)

  3、反馈交流 师:很多小组都已经完成了,先请同学们来说一说,根据你们的方案,需要种几棵树? (5棵,4棵,3棵)

  (1)两端都栽 师:为什么同样的一段路,同样的要求,种的棵数却不一样呢?你们的方案分别是怎样的?我们先从棵数最多的说起吧!哪个小组设计的是需要5棵的?来展示一下你们的设计方案。 (小组展示、交流设计思路)

  师:你们小组的设计方案是怎样的?

  师:他们小组的设计符合要求吗?这里他们是用什么来表示树的?根据他们的设计,一共需要5棵。

  (2)只栽一端 师:哪个小组设计的是需要4棵的? 小组展示设计方案: 交流设计思路)

  师:他们的设计符合要求吗?

  (3)两端都不栽 师:有的小组只要3棵就能完成要求,他们是怎样设计的呢?我们一起来看一看。 小组展示设计方案:交流设计思路) 师:他们小组的设计同样符合要求。

  (4)介绍线段图 师:刚才同学们用一条线段表示小路,用不同的图案来表示树,这些图案可以表示树,也可以表示什么?这就是线段图,在学习数学时,我们常常借助它,帮助我们从简单的问题入手,解决实际复杂问题,它对我们学习数学很有帮助。

  师:就一个要求,同学们就能设计出这么多不同的方案,真有创造力!看来你们都有成为环境设计师的资格。

  二、合作探究,总结方法

  1、总结规律

  师:我们一起来回顾一下同学们设计的方案,(出示三种方案线段图),三种方案都符合设计的要求,谁能说说他们相同的地方在哪里? (生说:两棵树间的间隔都一样,他们的间隔个数都相同) 师:不同的地方又在哪里呢? (根据学生的回答师出示板书:两端都载 只栽一端 两端都不栽) 师:我们具体来看这三种方案,首先,在两端都栽的情况下,每隔5米栽一棵,也就是每5米为一个间隔,20米里有几个这样的间隔?你是怎么计算的? (生说,师板书:20&xide;5=4(个))

  师:4表示什么?(4个间隔) [结合图观察]4个间隔需要几棵树?(5棵树) (师边讲解,边完成表格)

  师:为什么4个间隔有5棵树? 一个间隔跟着一棵树,一个间隔跟着一棵树,每个间隔都跟着一棵树,有4个间隔就有4棵树,最后剩哪棵树前面没有间隔?因为它两端都栽,所以还要加上前面的一棵。(列式4+1=5(棵))

  师:刚才我们是用列式和画图的方法探究出了间隔数和棵数。

  师:如果现在让同学们来种树,除了可以每隔5米种一棵,你们还想每隔几米种一棵呢? (根据学生的回答师填表格)

  师:请同学们任意选择其中的一种情况,用列式或画图的方法来探究它的间隔数和所需棵数。 (学生活动后反馈交流)

  条件:两端都栽

  师:从表格中,你能发现间隔数与棵数有什么关系吗?能用一个式子表示他们之间的关系吗?(生说,师板书:间隔数+1=棵数)

  2、运用规律

  师:老师有问题要考你们了,知道的同学马上起立回答我,比比谁的反应快?在两端都栽的情况下,8个间隔要有几棵树?10个间隔有几棵树?6棵树有几个间隔?10棵有几个间隔?

  3、探索规律

  师:同学们已经发现了当“两端都栽”的时候间隔数与棵数的关系,接下来我们就一起来探究“只栽一端”和“两端都不栽”的情况。 (师出示只栽一端线段图)在只栽一端的情况下,图上有几个间隔几棵树?(4个间隔4棵树)我们一起来看一看,(结合线段图讲解)一个间隔跟着一棵树,一个间隔跟着一棵树,刚好有几个间隔就有几棵树。如果现在有6个间隔有几棵树?7个间隔有几棵树?谁能发现间隔数和棵数的`关系? (学生说完后师总结规律并板书:间隔数=棵数) 师:(出示只栽一端线段图)现在还是一个间隔跟着一棵树吗?图上是几个间隔几棵树?谁能说说在两端都不栽时间隔数与棵数的关系? (生说,师板书:间隔数-1=棵数) 师:刚才我们探究了三种不同的栽法,他们有什么关系呢?

  三、开放练习,应用方法

  1、师:其实植树问题并不只是与植树有关,生活中还有许多现象和植树问题很相似,我们一起来看一看。(幻灯片出示有间隔的图片)

  师:这些图片中的事物都存在着间隔,在数学上,我们把这类的问题统称为“植树问题”。(板书课题)

  师:在生活中,常常要解决这样的植树问题,我们必须要先确定他是属于三种情况中的哪一种,我们一起来判断一下:

  出示练习一: 选择下列问题所属类型: 类似植树问题:

  ①两端都栽

  ②两端都不栽

  ③只栽一端

  (1)、在一条全长2千米的街道两旁安装路灯,头尾都要安,每隔50米安一座。共需多少灯?

  (2)、5路公共汽车从起点开出,行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  (3)、希望小学两栋教学楼之间有一条100米长的小路,为了迎接六一节,学校计划在小路的一边插上彩旗,每隔5米插一面,一共需要几面彩旗?

  2、师:你们掌握了今天的知识了吗?能不能独立完成第三道题? 希望小学两栋教学楼之间有一条100米长的小路,为了迎接六一节,学校计划在小路的一边插上彩旗,每隔5米插一面,一共需要几面彩旗?如果两边都要插,一共需要几面彩旗?

  四、课堂小结,课外延伸

  师:通过这节课的学习你有什么收获?

  这节课我们学习了植树问题,发现了植树的规律,并能运用规律,解决生活中的实际问题。其实植树问题里还有许多有趣的知识,需要同学们在以后的学习中去探索和发现。

  《植树问题》教学设计 2

  教学目标:

  1、通过探究发现一条线段上两端要种植树问题的规律。

  2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点

  使学生掌握“两端都要种的植树问题”的解题方法。

  教学难点

  使学生掌握已知株距和全长求株数的方法,以及已知株数和株距求全长的方法。

  教学准备

  多媒体课件、小棒、直尺、卡片、探究表。

  课前互动:

  1、同学们,我们先来说说顺口溜,好吗?一只青蛙一张嘴,两只眼睛四条腿;两只青蛙两张嘴,四只眼睛八条腿。会说吗?请继续……

  2、接下来,我们来说一个不一样的,有信心吗?两个手指一个隔(教师示范用手指展示出来,让学生也跟着做),三个手指两个隔,会说吗?请继续……学生说到五个手指四个隔时,引出“间隔,间隔数”的概念。(在数学上,我们把空格叫做间隔,也就是说,5个手指之间有4个间隔?间隔数为4。)

  3、随机请一行同学站起来,不断增减学生,让学生边观察边说,几个同学几个隔,老师发问,哪个间隔长,引出“间隔长”的概念。

  教学过程

  一、引入课题

  生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)

  二、引导探究,发现“两端要种”的规律

  1、情景导入例题

  ①课件出示校园图片。

  植树不仅能净化空气,还能美化环境。这是我们学校的新校区,绿化校园是我们的一个重要任务。植树节那天,我们全体老师参与了植树活动,(出示综合楼前的小树图片)这是我设计的,你们想知道我是怎样设计的吗?(出示操场图片)这是我们学校的操场,操场外面是一条车道。现在要在车道一边种一行树,校长想在我们班选几名优秀环境设计师完成这项任务。你们想成为优秀环境设计师吗?

  出示示意图及题目:同学们在全长100米的车道一边植树,每隔5米栽一棵树(两端要种)。一共需要多少棵树苗?

  ②理解题意。

  a、指名读题,问:要求一共要栽多少棵树,首先应该考虑到哪些问题

  b、理解“两端”“一边”是什么意思?

  指名说一说,然后师实物演示:指一指哪里是这尺子的两端?一边又是什么意思?

  说明:如果把这根尺子看作是这条车道,在车道的两端要种就是在车道的两头要种。一边栽就是在车道的一旁栽。

  ③算一算,一共需要多少棵树苗?

  ④反馈答案。

  2、引发猜想

  师:三种意见(19棵、20棵、21棵),哪种是正确的呢?

  三、解决两端都种求总长度的实际问题

  同学们发现规律的能力可真不错。下面我们玩个站队的游戏。

  1、这一列共有几个同学?(4个同学现场站队)如果每相邻两个同学的`距离是1米,从第1个同学到最后一个同学的距离是多少米?

  师:这个问题与刚才的类型有什么不同?学生试做,反馈。

  你运用哪个规律?(间隔长×间隔数=总长度)

  2、这一列共有10个同学呢?100个同学呢?

  3、这个规律,你能算算我们学校综合楼的长度吗?

  出示:学校综合楼前种树,每隔4米种一棵,一共种了15棵树。从第一棵到最后一棵一共多少米?学生口答。(示意选拔设计师)

  小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵数用间隔数+1; 还知道通过棵数与间距求总长度。

  四、回归生活,实际应用

  其实,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  1、出示:在一条全长2千米的街道两旁安装路灯(两端也要安装),每个50米安一座,一共要安装多少座路灯?

  问:这道题是不是应用植树问题的规律解决的?学生读题,练习反馈。(示意选拔设计师)

  2 请同学们认真听,伸出右手,用手指记下钟敲打的次数,你发现什么?(次数比间隔数多1)

  出示:广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间?

  学生讨论,汇报。(示意选拔设计师)

  五、全课总结

  1、师:同学们今天的表现真不错,运用发现的规律解决了不少问题,你们看,老师把大家的发现编成了一首儿歌,我们一起来读读吧!

  小树苗,栽一栽,两端都栽问题来,间隔数多1是棵数,棵数少1是间隔数,怎样求出间隔数?

  全长除以间隔长度。

  2、师:植树问题中的学问还有很多,在以后的学习中,我们还会学到两端不栽,一端栽,封闭图形中的植树问题,这些都需要同学们在以后的学习中开动脑筋、积极思考才能找到解决问题的好办法。

  《植树问题》教学设计 3

  【教学背景

  “植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、只栽一端、两端都不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。

  【教学内容】

  数学广角(一):两端都栽、只栽一端、两端都不栽的植树问题,教材第117至119页例1、例2及相应的“做一做”。

  【教学目标】

  知识与技能:通过观察、操作及交流活动,探索并认识不封闭线路上间隔排列中的简单规律,并能将这种认识应用到解决类似的实际问题之中。培养学生观察能力、操作能力以及与他人合作的能力。

  过程与方法:主要让学生通过观察、操作、交流等活动探索新知。

  情感、态度与价值观:在解决问题的过程中,感受数学与现实生活的密切联系。

  【教学重、难点】

  引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。

  【教学准备】

  一、创设情境,揭示课题。

  1、教师出示几幅有关北方沙尘暴的图片,引出植树的话题。

  学生看完视频和照片说一说有什么感受?

  治理沙尘暴最有效的办法是植树造林。你们看,我们学校的学生家长和老师,都积极投身到植树造林的活动中。看到这一排排整齐的小树,如果我们从数学的角度来分析,这里面还有很多有趣的数学问题。这节课我们就来研究——植树中的数学问题。(板书课题:植树中的数学问题)

  【设计意图:通过播放沙尘暴视频及照片,让学生深刻体验到数学问题来源于生活,激发学生的学习兴趣,及时渗透环保教育】

  二、引导探究,发现规律。

  (出示情境)为了绿化校园,学校要在一条全长20米的小路一边种树。每隔5米植一棵。想一想,要植多少棵树?(学生自由读题)

  (1)理解什么是每隔5米植一棵?下一棵怎么栽?

  (2)介绍什么是一个间隔?学生指一指每一个间隔。

  (3)教师出示学具分析题,学生可以借助学具摆一摆再列算式算一算。(学生小组合作动手操作)

  【设计意图:把课本中的`例1在100米长的路上种树,改为在20米长的路上种树。这样降低了探究的难度,便于学生观察、思考。同时通过情境图和开放性的'提问,为下一环节的探究作好准备。】

  ①组织反馈交流

  师:你给大家介绍一下你是怎么想的?(学生可能只出现只植两端)教师及时引导在我们实际植树活动中会遇到什么情况?

  可能会遇到建筑物,遇到建筑物怎么了?植不了树了,可能会在哪些地方遇到建筑物?看来不仅有这一种植法,还有其他可能,请同学们再动手摆一摆算一算。(学生继续操作)

  ②学生汇报其他两种植法。

  学生说一说自己的方法,在哪里遇到建筑物,植了几棵树?

  ③比较三种植法有什么不同?(强调在20米的小路一边间隔是5米植树只有这三种情况)并板书:两端都植、只植一段、两端都不植。

  【设计意图:本环节先通过想象提问,为学生如何去探究起到提示作用。接着采取较开放的形式,自主确定每棵之间长度,通过对每一种方案动手摆一摆,列式计算,初步感知每种方案的计算方法。再接着让学生观察每一种方案,使学生从中得出,虽然确定的每棵之间长度不同,而计算方法是相同的。最后教师又让学生想象、观察,针对实际背景的不同,应选择相应的种树方案。整个环节在教师的积极引领下,充分突出了学生的主动参与,使学生经历了在操作中思考,在观察中比较,在交流中评价概括。】

  (4)理解三种不同的植法中为什么都有20÷5=4这个算式?(学生说一说并上来指一指4在哪里?)

  20÷5=4原来都是在算有几个间隔数。强调虽然植法不同但他们的间隔数却都相等,都有这样的4个间隔。

  【设计意图:学生通过数形结合理解在植树问题中,求出间隔数非常关键。】

  (5)理解4个间隔加1为什么等于5棵树?介绍一一对应的数学思想。

  学生先想一想,再一起来看一看。

  重点强调:1棵树对于1个间隔,1棵树对于1个间隔,4棵树就对应了4个间隔,最后1棵树没有对应的间隔就多了1棵树,所以是4棵树加1棵树等于5棵树。

  找一学生再来说一说,同桌两人说一说。

  (6)学生独立尝试借助一一对应的数学思想解决另外两种植法。

  【设计意图:让学生体会一一对应的思想,并深入去理解其他两种植法中也蕴含的一一对应思想,把一一对应的思想与植树规律结合在一起,得出的规律就有水到渠成的效果很好地突破难点。】

  小结:刚才我们在理解这几个算式时用到了一个重要的数学思想,叫做一一对应,一一对应的数学思想可以使复杂的数学问题变得非常简单。

  (7)寻找三种不同的植法棵数与间隔数之间的关系。

  观察这三种不同的植法,植的棵树和间隔数之间有这样的关系?你可以看图来想一想也可以借助算式来思考。同桌两人商量商量。

  学生汇报,教师板书。

  小结:通过刚才的学习我们知道了有这三种不同的植法,但他们的间隔数都相等,看来在植树问题中求出间隔数非常重要,我们还知道了他们棵数与间隔数之间的关系,分别是两端都植是棵树等于间隔数加1,只植一端是棵树等于间隔数,两端都不植是棵树等于间隔数减1。你们学会了吗?老师来考考你。

  设计意图

  新知结束后带着学生一起回顾所学的知识,如此设计是基于学生的思维状态,让学生对当堂课的知识和收获做一个回顾,就是学生整理知识思路、内化知识的过程,能起到画龙点睛的作用,更能培养学生的归纳能力。

  精讲精练:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端都要栽)。一共要栽多少棵?学生独立完成。

  《植树问题》教学设计 4

  教材内容:

  人教版五年级上册数学广角植树问题P106页例1

  教学目标:

  1、通过猜测、验证等数学探究活动,使学生发现一条线段上两端都栽的植树问题的规律,构建数学模型,解决实际生活中的问题。

  2、培养学生通过“化繁为简”从简单问题中探索规律找出解决问题方法的能力,初步培养学生的模型思想和化归思想。

  3、通过合作交流,感受数学在生活中的的应用,体验学习成功的乐趣。

  教学重点:

  运用数形结合、一一对应建构植树问题模型,并灵活地解决植树问题。

  教学难点:

  “一一对应思想”的运用

  教学准备:

  课件、10根小棒、尺子、白纸等。

  教学过程:

  一、创设情境引入

  1、师:今天张老师和大家一起学习,你们欢迎吗?怎么欢迎?(学生鼓掌)

  师:手不但能表示情感,还藏着数学奥秘呢!伸开你的右手,你找到了数字几?

  生:5

  师:5是什么?

  生:5个手指

  师:就是手指数,那还能发现哪个数?

  生:4个空隙

  师:你能指给大家看看吗?

  师:像这样每两个手指之间的空隙,在数学上叫做间隔。(板书:间隔)

  师:4根手指几个间隔?三根呢?

  2、找一找生活中还有哪些间隔现象?(课件出示)今天我们就一起来研究与间隔有关的一类有趣的数学问题:植树问题。(板书课题)

  二、发现规律

  课件出示:同学们要在全长500米长的小路的一边植树,每隔5米栽一棵树。(两端都栽)一共要栽多少棵数?

  (1)你获得了哪些数学信息?问题是什么?“一边”“每隔5米”、“两端都栽”什么意思?(解释“一边”、“500米”是全长和“每隔5米”是间距)

  (2)那么我们需要种多少棵树呢?

  (3)请同学猜一猜、算一算

  预设:100÷5=20?

  100÷5+1=21?

  100÷5-1=19

  (4)引导验证:现在有不同的猜想,到底谁的对呢?怎么办?我们能不能想一个办法验证呢?如果我们画图来验证,你觉得好不好?(太麻烦)

  三、建立数学模型

  1、化繁为简

  师:我们可以先从简单数据开始研究。我们可以把这里的总长500米改成5米、10米、15米20米、30米,请你选一个来摆一摆、画一画,数一数、找一找规律验证下吧。

  出示活动要求:

  (1)结合生活情境,独立用学具摆一摆,也可以用画一画、找一找、算一算的办法研究两端都栽的情况下,棵数与间隔数的关系,有困难的同学也可以同桌合作。

  (2)完成后,在小组内说一说你的想法。

  2、全班交流,完成表格。

  3、引导总结规律,完成板书:

  小结:1棵树对应1个间隔,最后一棵对应的间隔没有了,棵数比间隔数多1。你再仔细观察,还有什么新发现?

  板书:两端都栽:全长÷间隔长=间隔数

  间隔数+1=棵树

  棵数-1=间隔树

  师:如果老师下面空格里的全长填上40米,那么你能不画图列式得出答案吗?100米呢?

  预设:40÷5=8?8+1=9(解释8表示间隔数)

  4、回归应用

  (1)师:那回到原来的题目全长改成500米,会算吗?那么我把数字再放大变成1000米,怎么做?

  (2)全长10000米,每隔10米种一棵(两端都种),要种多少棵?

  5、小结:其实今天的学习我们用了一个非常重要的'学习方法,(板书:以小见大或化繁为简)也就是像这样遇到数据比较大或比较繁琐的问题时我们可以用一些小数据、一个简单的草图找到规律来解决。

  四、联系生活,解决问题

  1、出示:为美化校园环境,建安小学准备在一条长10米的小路两旁,每隔2米放一盆花,(两端都放)一共可放多少盆花?

  学生审题后独立完成。

  交流提问:这个问题也是植树问题吗?为什么?生活中还有类似的问题吗?

  师:这些树、花盆、小旗等都可以用点来表示,植树问题就是研究这些点和间隔关系的问题。

  2、路的一边从头到尾摆了6盆花,如果每两盆花之间在插一面小旗,一边能插几面小旗?两边呢?

  3、同学们排成一队去参观,从头到尾一共12人,每两个人之间的距离是2米,那么这列队伍长是多少米?

  五、课堂总结:

  这节课学了什么?有什么收获?

  六、拓展延伸:

  出示30米,每隔5米两端都种,学生读题。出示房子,师:现在还是两端都种吗?

  预设:只种了一端

  师:现在间隔数和棵数有什么关系呢?

  再出示一个房子,师:现在还是只种一端吗?

  预设:两端都不种

  师:那间隔数和棵数又有什么关系呢?同学们下课以后可以用我们今天学到的方法研究一下。

  《植树问题》教学设计 5

  教学内容:

  四年级下册第117、118页例1

  教学目标:

  1、利用生活中的问题,通过实践活动让学生发现段数与植树棵数之间的关系,并能利用规律来解决简单的植树问题。

  2、进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

  3、渗透数形结合的思想,培养学生借助图形解决问题的意识。

  4、通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  教学重难点:

  1、利用生活中的问题,通过动手操作的`实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2、培养学生从实际问题中发现规律,应用规律解决问题的能力。

  3、提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

  教学、具准备:课件、尺子等。

  教学过程:

  一、游戏问答,认识“间隔”

  1、同学们,我们先做个游戏请你们伸出一只手张开手指,仔细观察。

  2、把你的手放好,我们进行快速问答:五个手指几个空?4个手指几个空?2个手指几个空?3个手指几个空?一个手指几个空?

  3、这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔,(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)

  4、今天我们就一起来研究生活中跟间隔密切相关的数学问题。

  二、创设问题情境:

  1、最近我们的学校发生了很多的变化,新修建的操场旁有一条小路需要同学们发挥聪明才智来绿化、美化我们,现在请你来当设计师,你对自己有些信心吗?现在我们一起来了解一下设计的内容和要求。

  2、多媒体出示题目:学校操场边有一段长20米的小路,学校打算在小路一边植树(两端都栽)、并且每两棵树之间的距离都相等。请按照要求设计一份植树方案。并说明设计理由、

  3、从屏幕中你获得了哪些信息?你认为在设计时需要特别注意什么?你能解释什么是两端吗?

  (总长20米两端都栽间距相等)

  4、在分组探讨前,请先商量好准备每隔几米栽一棵,然后动动手、动动脑,看用什么方法能够又快又好的解决这个问题。(同桌合作)

  5、学生活动,教师巡视指导。

  三、探讨新知:

  1、谁能展示一下你的设计才能,注意说明白你是每隔几米栽一棵?一共需要多少棵树?你是怎样获得这个结果的?

  2、学生交流汇报(画线段图法、计算法)

  3、教师介绍讲解概念:总长、间距、段数、棵数(并随机板书)

  4、用多媒体演示线段图的推理过程。

  在设计方案、交流方法的过程中,老师发现有的同学没有画线段图,而是直接列出了算式,他们一定找到了规律,我们现在也一起来找一找这个规律是什么。

  总长20米,间距10米,有几段几棵。

  总长20米,间距5米,有几段几棵。

  总长20米,间距4米,有几段几棵。

  总长20米,间距2米,有几段几棵。

  5、学生交流,教师总结并板书:

  棵数总比段数多1,段数总比棵树少1。

  总长÷间距=段数段数+1=棵数

  6、当总长是20米时,我们可以用线段图来解决,当路段变长是1000米、2000米时,就不能这样做了,就需要用发现的规律来解决这样的.问题。

  7、多媒体出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端都栽)。一共需要栽多少棵树苗?

  (1)了解题目内容。

  (2)学生独立思考,全班交流。

  8、刚才我们所提到的手指数和间隔数分别相当于植树问题中的哪个数量呢?生活中不止是植树问题包含着间隔现象,在其他方面也广泛存在,你能举出这样的例子吗?(锯木头、路灯、表面上的间隔和数字……)

  9、下面我们就一起来解决生活中类似的问题:(独立思考解决,全班交流)

  ①同学们做早操,某行从第一人到最后一人的距离是24米,每两人之间相距2米,这一行有多少人?(独立思考解决,全班交流)

  ②李老师从一楼去某班教室,每走一层楼有24个台阶,共走了48个台阶。你知道李老师去几楼吗?(独立思考解决,全班交流)

  ③5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共应该设置几个车站?(独立思考解决,全班交流)

  ④在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一座。一共要安装多少座路灯?

  听老师读题你自己再读一读,你发现这道题与我们刚才所解决的问题有什么不同?有什么特别需要注意的词语?(2千米两旁)学生独立思考后,全班交流方法。

  四、拓展例题,训练思维:

  1、多媒体出示例1:同学们在全长( )米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽21棵树苗、

  (1)了解题意,解决问题。(21-1=20段20×5=100米)

  (2)学生质疑:为什么用21-1=20算出的是什么?为什么要减1?

  (3)我们所解决的这个问题跟刚才我们解决的例1有什么不同?

  (不论是要算出棵数还是总长都要先知道段数,然后根据问题列出算式)

  2、思维训练:

  ①第一个同学到第二个同学之间的距离差不多是1米,那么,第一个同学到第五个同学的距离是多少米?

  ②园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  3、出示刘翔的图片,展示刘翔竞赛的过程引出问题:中间共有10个栏,栏间距离为12.2米,请你们算出从第一栏架到最后一个栏架有多少米吗?

  五、课堂总结:

  今天我们一起探讨学习了植树问题中两端都栽的情况,谈一谈你的收获有哪些。其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等,这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

  《植树问题》教学设计 6

  教学目标:

  1、通过探究发现一条线段上两端都种、只种一端、两端不种三种情况植树问题的规律。

  2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3、感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。

  教学重、难点:

  发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。

  教学过程:

  一、创设情境——培养意识

  1、师:同学们好!一起来看两组画面。

  (给学生播放荒漠化严重的和绿化优美的两组图片。)

  师:看了这两组画面,你更喜欢哪一种呢?

  师:怎样才能拥有这样美丽的环境呢?

  生:植树。

  师:植树造林,保护环境,让我们拥有一个充满鸟语花香的绿色花园是我们每个人都应尽的义务!

  师:说到植树,大家知道吗?在我们数学王国里,植树可是有一定的学问的,这节课我们就来探讨“植树问题”。——板题

  2、出示教学目标

  3、师:见过路边种树吗?一般情况下,每两棵树间距离怎样呢?(相等)一般情况下路边植树每两棵树之间的距离都是相等的,我们也可以叫做等距离植树。

  师:在路的一边等距离地植树会有几种情况呢?大家想不想亲手种种看?

  二、动手种树——探讨规律

  1、动手“种”树

  师:大家先看老师为大家准备的材料……(师介绍)

  出示操作要求:在路的一边,等距离植树,种完后小组里交流看看有几种情况?

  学生动手植树,师巡视。

  2、交流方案

  小组上台展示自己组的种树方案。

  两端都种

  两端不种

  只种一端

  3、仔细观察,每棵树之间都有间隔,那么植树的棵数跟间隔数之间有什么联系?

  生仔细观察,得出猜想: 两端都种 棵数=间隔数+1

  两端不种 棵数=间隔数-1

  只种一端 棵数=间隔数

  三、验证规律

  1、师:通过仔细观察,我们得出了自己的猜想。但是,每一种猜想在没有验证之前,也只能是一种猜想,我们只有通过验证,才能让猜想成为科学,对于我们刚才总结出的规律也必须通过验证才能得出正确结论。下面,让我们一起动手来验证我们的`猜想。

  2、完成验证表格。

  师出示:这是一张验证表格,就请大家在小组内共同合作,一起探究,并展示你们组总结出的规律。(出示验证事项)

  3、小组合作探究。

  4、展示。

  分三种情况汇报。

  5、梳理规律

  师:同学们,在一条路的一边植树的三种规律我们都找出来了,我们一起来研究一下,它们之间有没有什么关系?

  相同点:都与间隔数有关

  不同点:两端都种要用间隔数+1;只种一端就等于间隔数;两端不种就要用间隔数-1

  师:这三种情况是不同的,我们在解决问题时,要注意具体情况具体分析。

  四、解决问题

  师:知道在路的一边植树有三种情况,对于下面的信息,你会提出什么样的数学问题呢?

  1、处理信息

  问题情境:这是实验小学刚建好的一条校道(配图),看到这光秃秃的校道你会想到什么呢?

  生:种树!

  出示信息:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵

  师:根据这些信息你会提什么数学问题呢?

  生:一共可以种多少棵树?

  得不完整例题:

  实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵, ,一共需要多少棵树苗?

  师:看着这道题,谁有话想说吗?

  生1:两端都种

  得完整例题:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,两端都种,一共需要多少棵树苗?

  师:受他的启发,还能提出什么样的问题?

  生2:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,只种一端,一共需要多少棵树苗?

  生3:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,两端不种,一共需要多少棵树苗?

  师:三种情况大家都想到了。大家再看看这条校道,你认为采取哪种方案更合适一些呢?

  生:两端都种

  2、抽取问题

  出示例题:(配图片)

  实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,两端都种,一共需要多少棵树苗?

  师:愿意帮学校算算吗?

  3、学生试解。

  4、汇报交流。

  生汇报,师:能说说你的解题思路吗?

  师:刚才我们从小的数据入手,探讨出规律,然后再用规律来解决数据大的问题。这种思路正是数学上常用的“以小见大”。

  师:大家学会了这种方法吗?我们再来考验考验自己的掌握情况好不好?

  5、探讨只种一端

  师:如果学校想在这路的末尾建一座供师生休息用的小亭子,那又应该选用哪一种植树方案更合理?

  生:只种一端。

  (实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,只种一端,一共需要多少棵树苗?)

  学生试解。

  6、探讨两端不种

  师:我们再接再厉,学校后来还要在这条校道的另一端筑一个墙报,请大家想想,应采用哪种方案更合适呢?

  生:两端不种。

  (实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,两端不种,一共需要多少棵树苗?)

  学生试解。

  五、小结方法——提升认识

  1、探讨方法

  师:大家能通过自己的努力把这么一道新的问题解决,我们应该感到高兴!但是老师认为还有更重要的方法更需我们去总结!

  师:大家再回头看看,我们是怎样一步一步把植树问题给解决的?

  (动手操作——提出猜想——画图验证——得出规律——解决问题)

  2、阅读课本

  (1)阅读例1

  师:今天我们学习的就是课本117页开始的数学广角,请大家打开书本。

  师:课本上的同学们遇到了什么问题,他们又是采取什么样的办法来解决的?

  生:画图,找规律。

  师:真是好方法!大家掌握了吗?

  师:他们遇到的问题正确答案应是多少呢? (21)

  (2)阅读例2

  师:阅读118页例2,看看课本中的孩子又遇到了什么问题,你能帮他们解决吗?

  生完成,交流。

  六、拓展练习

  1、听说大家聪明能干,又乐于助人市政规划局的同志找来了,他呀,想请大家帮个忙,(出示119页做一做1)

  2、生尝试解答。

  3、全班交流。

  七、全课小结

  师:通过今天的学习,你有什么收获呢?

  生畅谈自己的收获。

  师小结:收获方法比收获知识更重要,祝贺大家!

  《植树问题》教学设计 7

  单元教学目标:

  1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。

  2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学时数:4课时

  数学广角植树问题(一)

  第一课时教学内容:

  教科书第117页118页的例1、例2

  教学目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生感悟分的`段数与植树棵树之间的关系。

  2、通过小组合作、交流、使学生能理解段数与植树棵树之间的规律。

  3、通过实践活动激发热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点、难点:

  教具:

  挂图、直尺

  教学过程:

  一、创设情境,引入课题

  1、每位小朋友都有一双灵巧的'小手,它不但会写字,画画、干活,在它里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手,请每一位学生高举起右手,并将五指伸直,关拢。

  师:现在请每位小朋友将五指张开,数一数,张开后有几个空格?(4个)

  师:在数学上,我们把这个空格叫间隔。刚才,我们把五指张开,有4个空格,也就是4个间隔。

  2、举例说出生活中的间隔到处可见,比如:在马路边种树,每两棵树之间有一段距离,我们就把这一段距离叫做一个间隔,楼梯、锯木头等。

  3、大家清楚地看到,5个手指之间有4个间隔,那么,将手指换成小树,5棵小树之间有几个间隔(4个),6棵呢?7棵呢?

  今天,我们就来学习有趣的植树问题。

  (一)出示:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  1)同桌相互讨论。

  2)有线段图表示你的方法

  3)学生汇报

  4)引导总结:

  两端要栽的时候,比较间隔数和棵数,你得出什么规律?(生:棵树比间隔数多1)

  你能用一个式子表示两端都栽的棵数和间隔数的关系吗?

  板书:棵数=间隔数+1

  5)在线段图上,又有怎样的关系呢?

  点数=间隔数+1

  6)这个问题应是:1005=20(个)间隔数

  20+1=21(棵)棵数

  巩固练习

  (一)书第118页的做一做独立完成,指名反馈。

  (二)出示:大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?

  1)读题,理解题。

  2)分组看图讨论。

  3)尝试列式计算。

  4)交流:603=200间隔数

  两端不栽树:20-1=19(棵)

  192=38(棵)

  5)质疑:

  为什么减1?为什么乘2?

  比较例1与例2的不同?小组讨论,再交流

  例1两端要栽树,所以棵数比间隔大1:例2两端不栽树,所以棵数比间隔少1。

  巩固练习二:

  教科书第119页做一做1、2题

  学生独立完成,集体反馈。

  三、本课小结:

  通过今天的学习,你有什么收获?

  《植树问题》教学设计 8

  一、教学目标:

  1、知识与技能目标:通过动手实践,合作探究,让学生在做数学的过程中经历由现实问题到数学建模,理解并掌握植树棵数与间隔数之间的关系。

  2、过程与方法目标:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、合作交流的能力,以及针对不同问题的特点灵活解决的能力。

  3、情感与态度目标:让学生在探索、建模、用模的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。

  二、教学重点:

  理解植树问题棵树与间隔数之间的关系。

  教学难点:会应用植树问题的模型灵活解决一些相关的实际问题。

  三、教具准备:

  多媒体课件和未完成的表格。

  四、教学过程:

  课前准备:(多媒体放映牛顿和苹果的故事)

  师:科学家的故事给你什么启示?(勤于观察,善于思考,大胆猜想…)

  谈话引入:说到不如做到,让我们从现在开始,看谁的观察最仔细,看谁的思考最积极,看谁这节课也能从平常的事物中发现规律,准备好了吗?

  (一)、提出问题、引发思考、探究规律。

  1、手引发的思考。

  师:伸出你的左手,张开手指,用数学的眼光看一看,你发现了什么?

  师:大家都有一双锐利的数学眼睛,发现手指与间隔之间也有数学。其实在生活中那些司空见惯的现象,只要用心观察、思考也能发现他们的数学奥秘。这节课,我们将深入研究类似手指与间隔这样的数学问题。

  2、整体感知、确定研究方向。

  课件出示:在15米长的小路一边种树,每隔5米种一棵。可能有几种情况?

  展示学生的猜想:(两端都种,共4棵)(只种一端,3棵)(两端不种,只2棵)

  理解:“间隔”、“间隔数”、“棵数”。

  (二)、小组合作,探究规律

  1、提出问题。

  课件:在全长1000米的孟州市大定路的一边植树,每隔10米栽一棵树(两端都栽),一共需要多少棵树苗?

  学生的猜测可能有不同的结果:1000;1001;1002)

  2、自主探究。

  棵数和间隔数到底之间有什么关系呢?让学生大胆地猜想,并用图示的方法验证。

  课件显示:隔10米种一棵,再隔10米种一棵……,一直画到1000米!学生会感觉:这样一棵一间隔画下去,方法是可以的,但太麻烦了,又浪费时间。

  引导学生:要研究棵数和间隔数之间有什么关系,有更简单的方法吗?

  让学生思考、交流,尝试从简单入手,用“把大数变小数”的方法进行研究,渗透“化繁为简”的数学思想。

  3、发现规律。

  学生开始动手画图、填表、比较分析,然后展示他们的研究结果,发现在小数据中两端都种的情况下,都有“棵数比间隔数多1”的规律。

  师:“棵数比间隔数多1”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?

  课件动态演示:一个间隔对应一棵,这样一直对应下去, 1000个间隔就有1000棵,种完了吗?

  师:如果这条路变得很长很长、无限长,两端都种还有这样的规律吗?让学生从中体会到,不管数字多大,用“一一对应”的方法,最后还要补上一棵才能达到两端都种的结果。这个环节,潜移默化地渗透“极限”的思想。

  4、总结归纳。

  归纳“化繁为简”的解题策略。让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的`,用这样的方法,可以有效的解决问题。把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。

  5、总结规律。

  师:你们能用一个式子把规律表示出来吗?

  【板书】间隔数+1=棵数 棵数-1=间隔数

  6、联系生活

  在我们生活中存在着很多类似植树问题的现象,你发现了吗?

  让学生通过举例,体会到植树问题在生活中的广泛应用。同时让学生清楚地认识到路灯排列、排队等生活现象都与“植树问题”有着相同的数学结构,也给这种数学思想以充分的建模。

  (三)、点击生活

  ①(求间隔数)判断:元宵节,中华大街一侧从头到尾一共挂了200个大红灯笼,如果在每两个灯笼间挂一个中国结,需要201个中国结( )

  ②(求间隔长)公共汽车行驶路线全长9千米,从起点站到终点站共有10个站,相邻两站的距离约是多少千米?

  ③(求棵数)老师登古塔,每层有11个台阶,从一层开始一共走了55个台阶,龙老师到了第几层?

  ④ (求全长)塔楼上敲钟,从第一敲开始,每隔4秒敲一次,到第5敲时,一共间隔了几秒钟?

  (四)、拓展延伸。

  (课件出示世界著名数学问题)

  师:数学史上有个“20棵树”的植树问题,几个世纪以来一直都引起科学家的研究兴趣。这就是:‘20棵树,若每行四棵,问怎样种植,才能使行数更多?

  今天进入21世纪,20棵树,每行4棵,还能有更新的进展吗?数学界正翘首以待!期待着同学们大胆探索、积极思考,相信你们一定会有更大的收获!

  《植树问题》教学设计 9

  教学内容:

  《义务教育课程标准实验教科书数学(四年级下册)》第P117- P118

  教学目标:

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点:理解“植树问题(两端要种)”的特征,应用规律解决问题

  教学难点:理解“间距数+1=棵数,棵数-1=间距数”

  教学准备:课件

  教学过程:

  一、创设原型

  1、教学“间隔”的含义

  师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的'右手。(五指伸直、并拢、张开)

  师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

  2、举例生活中的“间隔”

  师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

  3、根据生活实景信息回答问题。

  (1)公园的一侧一些树,数了数有6个间隔,一共栽了几棵树呢?(7棵)

  (2)庄老师家在6楼,从1楼到6楼要爬几层楼?(5层)

  (3)河边的护栏有5根铁链,需要几根柱子?(6根)

  4、引入课题

  师:同学们刚才我们了解的5根手指间有几个间隔;爬楼梯要几层;铁链需要几根柱子等,数学中统称为植树问题。(板书)

  二、构建模型

  1、用图象语言描述“植树棵数与间隔数”之间的关系。

  师:(右手)我把5根手指看作5棵树,他有4个间隔。那么,6棵树、7棵树之间有几个间隔呢?你能用一个图来展示说明吗?(生作图,展示)

  2、构建植树问题的数学模型

  (1)我们一起来看一下这几位同学画的图,你能说说你是怎么画的吗?

  (2)比较一下这几种作图方法,你觉得哪种方法简便,看起来清楚?(是啊,用线段图的方法最简便,因此它也是我们最常用的。)

  (3)通过画图,我们发现这条路的两端都栽了树,这就是我们今天研究的植树问题的一种类型。(板书:两端都栽)

  (4)在线段图上,我们用点表示栽的树,几个点就是几棵树。通过画图,我们知道6棵树之间有5个间隔,7棵树之间有6个间隔,那么你能想象一下10棵树之间、50棵树之间、100棵树之间有几个间隔吗?你发现了什么规律?

  植树棵数 间隔数

  (板书:棵数-1=间隔数 间隔数+1=棵数)

  师:今天表现真不错,一下子就能找到这其中的规律,老师真为你们感到高兴!

  三、利用模型解决问题

  1、教学例1

  师:现在老师要考考你们了,谁敢接受检查?既然大家都想来,那么我们一起来。

  课件出示:同学们要在全长50米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  (1) 谁能大声清楚朗读这个题目?

  (2) 从中你了解了哪些数学信息?(小路长50米,两端都要栽、每隔5米。)

  (3) 两端都要栽是什么意思?每隔5米是什么意思?哪两棵树之间相隔5米?

  (3)这题也可以用画线段图的方法来解答,你能试着画线段图吗?

  (4) 展示学生线段图,你能说说你是怎么画的吗?

  (5) 为了看起来更清楚,老师把这张图移到了电脑上,你能猜猜许老师画图的意思吗?从这张图上你可以了解些什么信息?谁也知道了也想来说给大家听一听的?

  (6)线段图里其实就反映着题目的意思,你能看着线段图用算式来解答吗?学生独立列算式。

  (7)汇报:说说你的想法。

  ① 出示学生各种答案,板书在黑板上。

  ② 对于这几种方法,你们有什么看法吗?(生:我认为……)

  ③ 擦去错误答案,剩下正确答案:100÷5=10(个) 10+1=11(棵)

  ④师追问:大家都认为这种方法是正确的,那么谁能告诉我算式中的“50”表示什么吗?“5”表示什么?“100÷5=10(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“10+1=11(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。

  ⑤谁能够完整地说一说这个算式的意思?有谁听明白了,也想来说一说的?既然大家都想来说,那么我们就同桌互相说一说。

  2、试一试

  师:如果老师把题目改一改,看看谁还会?

  课件出示:“六一”儿童节快到了,学校决定在全长120米的求索大道一边插上彩旗。每隔8米插一面旗(两端都插),一共需要准备多少面彩旗?

  (1)

  (1) 生轻轻读题,说说从这个题目中你了解了些什么信息?

  (2) 和刚才这题比较,你想说什么?

  (3) 学生独立列式并汇报。

  3、巩固新知

  师:恭喜大家,顺利通过检查!你们还想接受新一轮的挑战吗?

  课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (1)生独立阅题,说说这个题目中又有哪些数学信息呢?

  (2)这个题目和前面做的两题有什么不同呢?

  (①前面那题告诉路的长度,而这题求路的长度。

  ②前面那题求植树棵树,而这题已经告诉了植树棵树。)

  (3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?

  (4)学生独立解答并汇报:

  (5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个) 35×6=210(米)

  (6) 擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?(板书:总距离)

  《植树问题》教学设计 10

  教学目标:

  1、通过猜测、试验、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。

  2、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

  教学重点:

  发现并理解两端都栽的植树问题中间隔数与棵数的规律。

  教学难点:

  运用“植树问题”的解题思想解决生活中的实际问题。

  教学准备:

  课件、直尺、学习纸。

  教学过程:

  (一)创设情境,引入新课

  教师:你们知道3月12日是什么节日吗?关于植树你知道些什么?(引导学生说诸如植树时两棵数之间有一定的距离,这些距离一般相等……这些与本课学习相关的信息。)

  教师:其实在植树中还隐藏着很多数学问题呢!今天我们这节课就来研究植树中的数学问题。(板书课题:植树问题)

  (二)充分经历,探究新知

  1、大胆猜测,引发冲突。

  (1)读一读,说一说。

  课件出示例1,引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?重点帮助学生弄清楚下列数学信息的含义:

  “每隔5米栽一棵”是什么意思?

  使学生明确“每隔5米栽一棵”就是指每两棵树之间的距离都是5米,每两棵树之间的距离也叫间隔长度,也可以说成“两棵树之间的间隔是5米”。

  “两端要栽”是什么意思?“一边”是什么意思?

  可以先让学生说一说,然后教师拿出实物演示。例如:让学生指出尺子的两端指的是哪里?一边指的是什么?

  (2)猜一猜,想一想。

  让学生根据例题中的信息,猜一猜一共要栽多少棵树苗,教师对学生的猜测不发表评论,引导学生积极发表自己的看法。

  教师:到底要栽多少棵呢?对不对呢?你打算怎样检验自己的猜想?

  引导学生用画线段图的方法进行验证。

  (设计意图:帮助学生厘清题意,让学生通过猜想答案,引起认知冲突,激发学生继续探究的欲望。)

  2、借助操作,探究规律。

  (1)初步体验,化繁为简。

  教师:我们用一条线段表示100米的小路,每隔5米栽一棵,大家可以用自己喜欢的图案表示树,每隔5米种一棵,每隔5米种一棵,照这样一棵一棵种下去……是不是很麻烦?

  教师:为什么觉得很麻烦?

  学生:因为100米里面有20个5米,太多了。

  教师:也就是说100米在这道题中显得数据有点大,因此画图时会比较麻烦。像这样比较复杂的问题,我们可以先从简单一些的情况入手进行研究。比如,我们可以先选取100米中的一小段研究。

  (2)教师演示,直观感知。

  教师演示课件,边演示边说明。

  教师:我们选取100米中的20米来研究,用一条线段表示20米,每隔5米栽一棵,也就是说树的间隔是5米。(教师板书)

  教师;大家看一看,我们把这段路平均分成了几段?也就是有几个间隔?栽了几棵树?

  引导学生说出20米长的一条路,间隔长度是5米,有4个这样的间隔,可以栽5棵树。

  (设计意图:让学生体会复杂问题可以从简单问题入手的解题策略,并通过课件的演示,向学生示范线段图的画法,为学生下面的自主探究作好准备。)

  (3)动手操作,初步体验。

  让学生自由选择100米中的一小段,动手画一画,看一看这一小段上,两端都要栽,一共要栽几棵树。

  教师选择有代表性的作品进行展示,为什么这样画?重点让学生说一说自己的想法:你是怎样画的?为什么这样画?一共要栽多少棵树?

  教师:虽然这些同学选取的长度不一样,一共要栽的棵数也不一样,但他们所画的线段图特别是他们的分析和思考方法有相同的地方,你能找到吗?

  引导学生观察,在这些不同的画法中,有一个共同的地方:棵树比间隔数多1。

  (4)合理推测,感知规律。

  教师:不用画线段图,如果这条路长30米、35米……又应栽几棵树呢?请同学们拿出学习纸,填写表格。

  学生填写表格,教师巡视,对个别学生进行指导和说明。

  学生填写完表格后,小组交流汇报结果。

  (5)归纳概括,理解规律。

  教师:请大家认真观察表格,你发现在一条线段上栽树(两端要栽),间隔数和棵树有什么关系?将自己的发现在小组内说一说。

  学生汇报自己的发现。

  引导学生发现两端都栽树,植树的棵数比间隔数多1,也可以说间隔数比棵数少1。

  教师:为什么两端都栽树,棵数比间隔数多1?

  学生回答后,教师借助课件演示帮助学生进一步直观理解。

  (设计意图:学生动手操作,合作交流。让学生在不断的操作和交流中,经历了观察、发现和感受的全过程,学到了解决问题的方法。)

  (6)即时巩固,强化规律。

  教师:同学们都明白了两端都栽的情况下树的棵数与间隔数之间的关系,老师出几道题考考大家:7个间隔种几棵树?20个间隔种几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?

  (设计意图:通过这个小练习,使学生进一步掌握在两端都栽的情况下,树的.棵数和间隔数之间的关系。)

  3、运用规律,验证例1。

  教师:回到例1,在100米的小路一边植树,每隔5米栽一棵(两端要栽),到底一共要栽多少棵树?哪些同学刚才猜对了?

  教师(点几个猜错的同学):现在你知道自己猜错的原因是什么了吗?给大家说说看,你要提醒大家注意什么?

  学生尝试列式解决问题,教师巡视,有针对性地指导。

  全班汇报交流,主要让学生弄清楚:100÷5=20是什么意思?为什么还要用20+1=21(棵)?

  (设计意图:让学生经历猜测——试验——验证的探究过程,同时让学生明确每步算式的意义,以便于学生更好地理解植树问题的数学模型。)

  (三)回归生活,实际应用

  1、“做一做”第1题。

  教师:这道题里没有植树呀,能用我们今天学的方法解决吗?

  使学生明确应用植树问题的规律,可以解决生活中很多类似问题。在本题中把一盏路灯看成一棵树,也能用植树问题的规律来解决。

  教师:其实植树问题,并不只是与植树相关,生活中有很多问题和植树问题相似,比如安装路灯、电线杆、设立车站等。

  2、练习二十四1、2、3题。

  让学生进一步感受到植树问题在生活中的广泛应用。

  3、练习二十四第4题。

  教师:这一题与例题有什么不同?

  老师引导学生找出此题与例题的区别。例题是知道全长与间隔长度求棵数,而本题是知道间隔长度与棵数求路的全长。

  教师:你是怎样计算的?为什么用36减1?

  (设计意图:运用植树问题的数学模型解决生活中的类似问题,把植树问题进行拓展应用,使学生能举一反三,触类旁通,并让学生体会到数学与实际生活的紧密联系。)

  (四)课堂小结,畅谈收获。

  反思:

  通过本节课的学习,让学生了解两端都栽的情况下,棵数和间隔数的关系,这部分内容比较抽象,为了将难点化简,讲授新知前,我利用手指游戏导入,孩子很感兴趣,而且初步感受到了棵数、间隔数的关系。再从生活中抽取简单的植树现象,加以提炼,建立数学模型,再将这一数学模型应用于生活实际。

  一、创设愉悦氛围,让游戏走入情境。

  从学生感兴趣的猜谜和游戏入手,创设轻松愉悦的氛围,让学生初步感知棵数、间隔数的关系,为进一步的探究奠定了基础。这种学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。

  二、注重自主探索,让体验走入方法。

  体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,为学生提供了充分思考的时间与空间,让学生从简单的问题入手,借助直观的图示,探索植树问题两端要栽的规律。借助图形,建立知识表象,注重对数形结合意识的渗透,使学生得到启迪,悟到方法,从而建立起学习的信心,进一步解决较复杂的问题,渗透一种化归思想。

  三、倡导知识运用,让建模走入生活。

  “数学来源于生活,而又应该为生活服务。”让学生认识到只要善于观察,就会发现生活中的许多事例跟植树问题相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。

  但这节课也有我颇感不足的地方,我觉得自己对学生的学习起点没有充分把握,没有注重学生逆向思维的培养,也没能很好地关注到全体学生,在以后的教学中,我还要注意把握好教材的度,适当进行取舍,更合理的安排好教学时间。

  《植树问题》教学设计 11

  教学目标:

  (1)在观察、操作及交流活动中抽象出植树问题的模型,掌握种树棵树与间隔数间的关系。

  (2)体验复杂问题简单化的快乐。

  教学重点:应用植树问题的模型解决相关的实际问题。

  教学难点:理解棵树与间隔数之间的关系。

  教学准备:课件

  教学过程:(如下文)。

  一、课前谈话

  1.手指游戏

  师:双手创造了幸福的生活,在我们的手上也隐藏了数学奥秘,同学们想明白吗?请举起右手像老师这样做,五指伸直,并拢再张开。看着张开的手,你从中想到了什么数字?(5,5个手指)

  师:老师从中也得到了一个数字4,你们明白它指的是什么吗?(缝隙、空格等)

  师:对了,指的是手指间的空格,在数学上我们把这样的空格叫做间隔。每两个手指之间有一个间隔,大家仔细观察老师的手,5个手指,有几个间隔,4个手指时有几个间隔呢?3个,2个手指时呢?

  师:你们发现手指数与间隔数的关系了吗?谁能说一说?(间隔数+1=手指数)

  [设计意图:以趣激学。从学生最熟悉的教学资源“手”入手,在简单的氛围中进入学习状态,初步感知生活中的植树问题。]

  2.导入课题

  师:我们手上都有这么多数学奥秘,看来数学真是无处不在!生活中的间隔到处可见。比如,刚才我们看到的5根手指有几个间隔;爬楼梯要几层;栓广告牌要几个柱子等就是数学中的植树问题。(板书课题:植树问题)这天我们主要来研究“两端都栽”的规律。(板书:两端都栽)

  二、动手种树,初步感知

  1.创设情境,提出问题

  (1)课件出示例1

  同学们在全长100米的小路一侧植树,每隔5米栽一棵树(两端要栽)。一共需要多少棵树苗?

  (2)理解题意

  ①指名读题,从中你了解哪些信息?

  ②理解“两端”是什么意思?

  (3)讨论交流

  师:我这样认为,100÷5=20,所以要准备20棵树苗。你们觉得呢?有了答案后与同桌交流交流。

  全班讨论、交流,汇报后得出结论,这种说法不对。就应是:

  100÷5=20(段)20+1=21(棵)(板书)

  2.简单验证,发现规律

  师:把双手举起来叉开手指,能够看到10根手指共有9个间隔,如果把手指看成树苗,10棵树有9个间隔。

  课件演示:每5米一棵,种到第100米的时候,你发现了什么?(两端都要种)

  问:100÷5=20(段)20表示什么意思?(两棵树之间的距离)

  20+1=21(棵)20段为什么不是20棵,而是21棵呢?

  我们把这条小路平均分成20份,其中的每一份(或者说每一段,每一个空)就是一个间隔,在这道题中,间隔指什么?共有几个间隔呢?也就是说,如果两端都种,种的棵树=间隔数+1

  透过这个例题,你明白了什么?(棵数与段数有关,求棵数得先求段数。即段数=总长÷间距)

  师:你们真了不起,发现了植树问题中十分重要的规律,那就是:

  间隔数(段数)=全长÷段长

  植树的棵数=间隔数+1

  全长=段长×段数

  [设计意图:导之敢学。在决定、计算、验证探索中学习知识,发现知识,并透过讨论交流,发现植树问题的一个十分重要的规律。]

  三、利用规律,解决问题

  师:其实植树问题并不只是与植树有关,生活中还有许多现象和植树问题很相似,我们一齐来看一看下面几个问题。

  ①刘怡瑶从家到校园乘公共汽车行驶路线全长3千米,相邻两站的距离是1千米。一共有几个车站?

  ②张老师去某班教室,从一楼开始,每走一层有12个台阶,共走了36个台阶,你明白她去几楼的教室吗?

  ③广场上的大钟3时敲3下,8秒敲完。11时敲11下,需多长时间?

  师:这些题是不是应用植树问题的规律解决的?看来,应用植树问题的规律,不仅仅能解决植树的'问题,生活中很多类似的现象也能用植树问题的规律来解决。

  [设计意图:乐中求学。把生活中类似植树问题的各种现象糅合在一齐,加深对植树问题模型的理解,提升学生思维的灵活性和深刻性。]

  四、再次探究,构建模型

  1.创设情境,激趣导入

  师:咱县新开张的德克士为了进一步宣传,要在全长50米的店面前沿插彩旗,请按照每隔5米插一面的要求设计方案,并说明理由。

  2.设计方案,动手操作

  师:能够独立思考也可小组讨论再设计方案。把你们设计的方案想一想,画一画,摆一摆。择优录取哦!

  (生动手摆学具,画线段图,动手算,师行间巡视,个别辅导,注意发现不同的算法)

  3.反馈交流

  师:谁来说一说自己设计的方案?把前沿分成几个间隔?(10个)插了几面旗?(11面,10面,9面)

  师:为什么同样的长度,同样的要求,插的旗数却不一样呢?你们的方案有什么特点呢?谁来展示一下自己的设计方案。

  生1:我设计分成10个间隔,插11面旗,两端都插旗(投影展示线段图同时师五指伸直手势表述)。

  生2:我也分成10个间隔,插10面旗,一端不插旗。(投影展示算法师拇指弯曲其余伸直手势表述)

  生3:我10个间隔插9面旗,两端不插旗。(投影展示学具摆法后师拇指和小指弯曲其余手指伸直表述)……

  4.师小结

  同一个要求,同学们却设计出了这么多不同的方案,真有创造力!看来你们都有成为设计师的资格。

  五、精彩回放,画龙点睛

  1.用手势表达植树问题的模型并考察同桌的掌握状况。

  2.透过这节课的学习,你们有什么收获?

  六、穿越时空,展望未来

  有20棵树,若每行4棵,问怎样种植,才能使行数更多?

  七、板书设计

  植树问题:

  两端都种:棵数=间隔数+1

  100÷5=20(个)……(间隔数)

  20+1=21(棵)……(棵数)

  10-1=9(个)……(间隔数)

  9+1=10(棵)……(棵数)

  《植树问题》教学设计 12

  教学目标:

  1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。

  2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。

  3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题。

  教学难点:

  让学生发现植树的棵数和间隔数之间的关系。应用规律解决问题。

  教学准备:

  课件

  教学过程:

  一、初步感知间隔的含义

  1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。 也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一齐弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。

  师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)

  2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。( 揭题,板书:植树问题)

  二、探究规律,解决问题。

  1、找出两端都种树的规律

  植树问题情景1,师出示:例1.同学们在全长100米的'小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准, 但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。

  假设路长只有10米、15米、20米,每5米栽一棵,两端都栽:(两端就是路的两头),要栽几棵呢?(小组合作用画线段图来表示小路,假设路10米,每隔5米种一棵,这条小路平均分成了几个间隔?两端都栽,摆几棵小树呢?)师:请同学们仔细观察,两端都栽树,栽树的棵数与平均分成的间隔数谁多谁少呢?(棵数都比间隔数多1或间隔数比棵数少1)师问为什么两端都种树,棵树只比间隔数多1呢?(因为从一端看过去,棵数和间隔数一一对应,一端只多了一棵树。)已知间隔数怎样求棵数呢?出示并板书:两端都栽:棵数=间隔数+1)考考你:如果这条路是25米、每隔5米栽一棵,各要平均分成几个间隔?两端都栽,栽几棵树呢?30米呢?

  师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷ 5 = 20 (个间隔)20+ 1= 21(棵)。利用两端都栽树,棵数=间隔数+1”这个规律解决了两端都植树的问题。

  三、应用规律,走进生活。

  走进生活:

  (一)目标检测:

  1.排列在同一条直线上的16棵树之间有( )个间隔。 2.从第1棵树到最后1棵树之间有30个间隔,一共有( )棵树。

  3.在一条全长200米的小路一边植树,每隔4米种一棵(两端要种),一共需多少棵树苗?

  (二)闯关题

  1、工人叔叔准备在一条长200米的大桥一侧安装路灯,每隔40米安装一盏,问共需安装几盏?

  2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?

  3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?

  5、15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?

  四、总结:通过这节课的学习,你们有什么收获?

  五、作业设计

  实地考察

  六、板书设计:植树问题

  两端要栽:棵数=间隔数+1;

  《植树问题》教学设计 13

  教学内容:

  四年级下册数学教科书第117页的例1

  教学目标:

  知识与技能

  1、理解和掌握在一条线段上植树问题的规律,本节课研究“两端都要种”的“植树问题”中间隔数与植树棵数之间的规律。

  2、引导学生用画线段图的方法分析理解题意,在摆学具的过程中理解间隔数与所栽棵数之间的规律,建构数学模型,感受数学的简化思想和应用价值。

  过程与方法

  经历解决实际问题的过程,体验分析解决问题的方法。

  情感态度与价值观

  体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力,受到热爱劳动、保护环境的教育。

  教学重点:

  发现“两端都栽”的植树棵数与间隔数之间的关系,并用发现的规律解决实际问题。

  教学难点:

  能应用规律解决实际问题

  教法与学法:

  教法:创设情境、引导学生探究

  学法:小组合作讨论

  教学准备:

  多媒体课件、30根小棒、6个圆片、6个三角形

  教学过程:

  一、创设情境

  课件出示:几张沙尘暴发生时的图片

  问生:看到这几张图片,要想改变这样的生活环境,你应该做的最有意义的活动是什么?(植树造林)

  师:植树造林可以防止沙尘暴,防止水土流失,净化空气,对我们有很多的益处。今天我们就来学习“植树问题”。板书课题。

  设计意图:通过生活中的几张照片,沟通数学与生活的联系,让学生体验到数学问题来源于生活,激发学生的学习兴趣,渗透环保教育,由此导入新课,明白本节课的学习内容。

  课件出示:(下面哪种情况属于两端都栽的)

  让学生直观地看到两端都栽的植树情况,然后进入本节课的主题:今天我们就来研究“两端都栽”的植树问题。

  设计意图:通过图示法,让学生直观地理解“两端都栽”的意义,为更好地探究新知作铺垫。

  二、自主学习,合作探究。

  (1)课件出示例题

  1、出示例题后,让学生猜一猜,可能栽了几棵?(4棵、5棵、6棵)

  设计意图:了解学生的已有知识水平,以及学生对自己答案的解释,这个环节教师不论学生答案是否正确,不作任何解释。引出矛盾,激起学生下一步探究的欲望。

  2、这时教师不急于下结论,让学生通过摆学具、画线段图等方法去验证哪个答案是正确的。学生发表各自的看法,说出为什么是5棵?渗透一一对应的思想。

  设计意图:通过摆学具、画线段图,让学生动手操作,直观验证到底哪个答案是正确的,潜移默化地渗透一一对应的思想。让学生通过实验的方法,做到心服口服,不盲目地作出选择,培养学生严谨认真的科学态度。

  3、想一想:植树时为了美观,整齐关键先确定什么?全长20米的小路一边植树,(两端要栽),还有哪些植树方案?(学生会出现间隔7米栽一棵,这时说明理由,如果这样栽的话,间隔长就不相等了)

  设计意图:给学生展现自我的机会,出现反例时,更能激发学生的求知欲,利用错误资源,能更好地证明间隔长必须是相等的,引出“间隔长”的意义。

  (2)课件出示表格

  (3)解释表中的“间隔长”、“间隔数”分别表示什么?

  (4)观察表中的数据与课件图示,让学生找一找全长、间隔长、间隔数、所栽棵数之间的关系,互相交流讨论。

  设计意图:通过分组练习探究,最后把结果都绘制到一个表格中,通过3个例子,采用不完全归纳法,让学生观察、讨论、交流,得出数量之间的关系,这是本节课的重点之处。

  (5)汇报交流成果,得出规律。

  从左向右看:全长÷间隔长=间隔数间隔数+1=所栽棵数

  从右向左看:所栽棵数-1=间隔数间隔数×间隔长=全长

  设计意图:数形结合,完善数学模型,弄清表中四个数量之间的关系,为后面解题提供解题思路。关键是弄清楚植树的棵数比间隔数多1。

  (6)初步应用规律解决问题。

  三、应用规律解决实际问题。

  1、自测题,看学生的掌握情况。

  设计意图:理解植树问题中,求全长的方法。

  设计意图:理解植树问题中,求所栽棵数的方法,加深理解“植树的棵数比间隔数多1”的道理。

  2、让学生说一说生活中的植树问题。

  设计意图:把植树问题进行扩展,在生活中找到植树问题的原型,这样把知识系统化,使学生能够举一反三,触类旁通,知道植树问题中的“树”可以代替生活中的其他事物,找到数学中的植树问题与生活中的植树问题的联系。

  四、应用规律解决生活中植树问题问题的原型。

  1、这一组有9个同学,相邻两个同学之间的距离大约是()分米,第一个同学到第9个同学的距离大约有多远?先让学生测量间隔长,然后再求问题。

  2、钟表问题。

  设计意图:灵活应用植树问题的数学模型解决生活中类似的植树问题,把植树问进行扩展应用,提高学生灵活解题的能力。

  五、课堂总结。

  设计意图:如此设计是基于学生的思维状态,让学生对当堂课的知识和收获做一个回顾,就是学生整理知识思路、内化知识的过程,能起到画龙点睛的作用,更能培养学生的归纳能力。

  教学反思:

  《植树问题》是人教版义务教育课程标准实验教科书四年级下册中数学广角的内容。数学广角作为人教版新增的内容之一侧重点是让学生在掌握知识的同时向学生渗透一些常用的数学思想和方法。如何把抽象的数学思想方法很好地渗透在环节在教学中使学生在“润物细无声”中深刻体验到数学思想方法的价值这是我在教学设计时着重思考和要解决的问题。一节课实施下来有成功之处也有不足之处。现做一个简单的小结与反思。

  成功之处:

  一、教学设计有深度、有厚度。

  教学设计分两条线走:一条线以构建学生知识结构为线索,使学生对植树问题的认识经历了“生活问题——猜想验证——建立模型”不断数学化的过程,较好地实现了由生活中的具体问题过渡到相应的“数学模式”,为上升到更抽象的数学高度奠定了基础。然后又让学生运用模型解决问题,把数学化的东西又回归于生活,也让学生再一次体会数学与生活的密切联系。另一条线以渗透数学思想方法为线索。

  对于植树问题的探究,不仅让学生通过画线段图、摆学具的方式自主探究、寻找,而且结合线段图、摆学具,让学生理解了为什么两端都种时,棵数会比间隔数多1,多的1指的.是哪一棵树。让学生不仅要知其然,还要知其所以然。

  由反复的修改,让我深刻地体会到了对教材研究的重要性,明白了“教师对教材看得有多深,才能使你的课堂有多厚”的道理。也让我知道了自己今后应该努力的方向。

  二、敢于放手让学生去探究,体现学生的主体地位。

  整堂课,我都比较注重学生的主体地位。因为我知道,只有学生自己想学、愿学,才能主动地学,并把学到的东西内化为自己的知识。因此对于重点部分的引入,即探究两端都种时,棵数与间隔数之间究竟有什么关系,我先让学生通过自己的猜测得到答案。当几种答案产生冲突时,再引导学生探究,这样更容易激发学生的探究欲望,激活学生的主体意识。而后的探究部分我就放手让学生去做,教师给予适当的指导,让学生在自主探索中掌握用线段图探究植树问题规律的方法。由此把方法内化为自己的东西,为下节课自主寻找另外两种植树问题的规律时,学生就比较轻松愉快了。

  三、注重教学思想的渗透和学习方法的传授。

  在整个教学的过程中,我都很注重数学思想方法的渗透。比如:当学生用一个线段图证明规律时,适时点拨。用一个线段图就能证明它是普遍存在的规律吗?再画几个试试(以小组为单位,分组研究)。交流时,让不同的学生说出用不同间隔的线段图得到同一个规律,实际就是向学生渗透不完全归纳法。在展示交流部分,通过对比10个间隔与2个间隔的线段图的难易,对比画一棵树和用

  一个点表示一棵树的难易,让学生体会简化的思想。通过找生活中的植树问题,并解决生活中的植树问题,让学生体会化归的思想。对于学习方法的传授,整节课都特别重视线段图的运用。

  当然,这节课也有许多的不足之处,列举几条:

  一、教学时间安排欠妥。有的教学内容没有来得及出示,有的内容讲解比较仓促。练习巩固时间不充分,没有检测时间,使教师没有及时掌握每个学生的学习情况,心中没底。

  二、本节课,我本想借助一一对应的思想去突破本节课的难点(两端都栽的情况下,所栽的棵数比间隔数多1),可是没有深入去理解植树问题中所蕴含的一一对应思想。所以,感觉得出的规律有些牵强、抽象,没有达到水到渠成的效果,没有把一一对应的思想与植树规律结合在一起,没有很好地突破难点。

  三、对学生评价这块显得能力不足。对于学生的评价如何做到即准确又有深度,还要具有启发性,这是我还得努力学习的方向。

  四、数学课关键在于“说”,以说促思,以说引思,这样可以了解学生的思维过程是否正确,以便教师及时调控课堂,改变教学策略,但是,为了能够完成教学任务,明知道应该让学生多说,但是由于时间问题,就把学生说的权利剥夺了,而去进行下面的教学内容,这是我一贯的通病,我争取改正,把更多的时间和空间留给学生,让学生真正成为课堂的主人。

  总之,一堂课下来,发现自己真的还有那么多的不足之处。反思自己,今后还应加强学习,学习理论知识、学习优秀课例,特别应该针对自己的不足之处,运用于实际教学之中,逐步完善、改正。希望能通过自己一点一滴的积累和改进提高自己的业务水平和调控、处理课堂生成的能力,使自己能不断进步、不断发展。

  《植树问题》教学设计 14

  一、教学内容

  教科书P117例1

  二、教学目标

  1、利用熟悉的生活情境,通过动手操作等实践活动,理解并掌握“两端都要种”的植树问题中间隔数与植树棵数之间的规律。

  2、在合作探究中解决问题,建构数学模型,感受数学的简化思想和应用价值。

  3、渗透数形结合的思想,培养学生借助线段图来解决问题的意识。

  三、教学重点、难点

  1、重点:通过探究,发现两端都栽的情况中“棵数=间隔数+1”

  2、难点:利用规律来解决生活中的实际问题。

  四、教学准备

  小棒、课件、练习本、表格

  五、教学过程

  (一)创设情境,引入学习

  1、每个人都有一双灵巧的小手,知道吗,在你的手上,还藏着数学知识呢?请伸出左手找找看,你找到了吗?

  (预设生:有5根手指生:有4个空)

  像刚才同学们所提到的2根手指间的空格,在数学上我们叫做间隔(板书间隔)

  2、生活中很多地方也存在着间隔,你能找到吗?

  (预设生1:树木之间有间隔生2:队伍之间生3:栏杆之间也有)指名3人

  3、老师也收集了一些(播放课件)

  过渡:看来与间隔有关的事物太多了,很有研究的必要,今天这节课我们就来研究与间隔有关的植树问题。(板书课题)

  (二)合作探究“两端都栽”的规律

  1、①课件出示请看题“学校准备在一条长20米的小路一旁栽树,每隔5米栽一棵(两端都栽),一共需要多少棵树苗?

  谁能响亮的读题?

  ②从题中你了解到了哪些数学信息?

  预设生1这条小路总长20米生2每隔5米种一棵(5米就是我们所说的间隔长)生3:两端都栽(什么是两端都栽?2人说)(板书两端都栽)生4:一旁

  ③能试着列列算式来解决吗?把你的想法列在练习本上。(指名板演)

  (预设生1:20÷5+2=6(棵)生2:20÷5+1=5(棵))

  还有不一样的吗?也上来写写

  说一说你的想法

  ④我发现你们虽然意见不统一,但是有一步却是相同的,找到了吗?20÷5是什么意思?

  指名2人说(板书总长÷间隔长=间隔数)齐读1次

  2、①到底哪种答案是正确的,你有什么方法来验证一下,同桌一起讨论一下。

  (预设生1:用手掌中的间隔现象来说明生2:用小棒来模拟种一种

  生3:画线段图来验证一下)

  方法有很多,但是画线段图是最常见、最一般的方法。

  ②你打算怎么画,能介绍一下吗?

  生介绍,师板画

  介绍,我们可以取任意长代表5米,这样5米5米地画,一直画到20米,(出示课件)几个间隔,几棵小树?(4个间隔5棵数)

  通过线段图,我们清楚的看出正确答案应该是20÷5+1=5(棵))

  3、①如果老师将总长和间隔长进行变换,你能自己迅速画出线段图得出间隔数和棵数吗?

  两端都栽的情况下

  同桌合作完成表格第2、3两行。

  ②展示1个学生的作品,课件出示

  观察大屏幕上的数据,想一想在两端都栽的'情况下,棵数与间隔数存在怎样的规律?

  指名3人说(在说时强调条件是两端都栽的情况下)(板书棵数=间隔数+1间隔数=棵数-1)加上条件再齐读一次

  4、验证规律

  ①在两端都栽的情况下,是不是棵数与间隔数都存在这种规律呢?想自己再来验证一下吗?

  ②请在表格的剩余两行自设总长和间隔长画一画线段图(注意你所设制的总长必须要能被间隔长整除)想一想怎样才能提高速度,间隔数太多了好不好?

  ③同桌再次合作,教师巡视

  ④汇报,教师记录结果

  ⑤通过这些数据,你有什么要说的吗?为什么棵数总比间隔数多1?

  700个间隔,几棵树?1000棵数几个间隔?

  (三)练习生活,拓展应用

  生活中有很多类似问题也能用植树问题的规律来解决,比如装路灯,设车站,做楼梯,锯木头等等,一起去看看吧!

  1、在一条全长400米的街道两旁挂灯笼,每隔8米挂一个(两端都挂),一共需要多少个灯笼?女生读题学生独立列式,说一说你的理解

  2、刘翔一共要跨10个栏,每两个栏之间的间隔长是10米,求从第一个栏到最后一个栏一共有多长?男生读题刚才求的是棵数,现在求的是(总长)要求总长必须知道什么条件独立列式,汇报结果,说说理解。

  3、你看过钟表吗?

  你听——当当,这是几时;当当当这是几时,有几个间隔?

  在钟声里也有数学问题,一起去看看吧!

  出示广场上的大钟5时敲响5下,敲响第一下到第五下用了8秒,12时敲响了12下,需要多长时间?

  (四)课堂小结,留下悬念

  1、这节课同学们都表现得非常认真,积极,想一想在这节课上你有什么收获?

  2、收获那么多,老师真为你感到高兴,其实植树问题中还有很多数学问题,你比如说一头栽一头不栽,两头都不栽,在封闭图形上栽等等,他们又存在怎样的规律?就让我们带着对这些问题的思考迎接下节课的学习吧!

  《植树问题》教学设计 15

  教学目标:

  一、知识与技能性:

  1、利用学生熟悉的生活情境,透过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。

  2、能够借助学具,利用规律来解决简单植树的问题。

  3、透过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

  二、过程与方法:

  1、进一步培养学生从实际问题中发现规律,应用规律解决问题的潜力。

  2、渗透建模的思想,培养学生由具体到抽象的转化思想。

  3、培养学生的合作意识,养成良好的交流习惯。

  三、情感态度与价值观

  1、透过实践活动激发热爱数学的.情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  2、渗透爱绿、护绿的德育教育。

  教学重、难点:

  引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。

  教学准备:教具、学具、课件

  教学过程:

  一、创设情境,导入新知:

  (出示光头强砍树的画面)

  师:孩子们,你们喜欢光头强吗?

  生:不喜欢

  师:为什么呢?

  生:因为他乱砍树,破坏森林(让学生畅所欲言,对学生进行爱绿、护绿的德育教育)

  (出示熊大、熊二抓光头强的画面)

  师:它们也不喜欢呢!瞧、

  (出示“保护森林,熊熊有责”)

  师:其实,保护森林,不仅仅仅是熊的职责,更是

  生:人的职责

  师:那我们就应说

  生:“保护森林,人熊有责”

  师:这天,就让我们跟熊大、熊二一齐来植树吧!

  二、建模探究,总结方法

  1、探究“两端都植”的状况

  出示:熊大、熊二要在小路的一侧植树(两端都植)

  引导孩子们认识“一侧”“两端都植”。

  在教具上,引导孩子们理解并板书“总长”“间隔长”“间隔数”和“棵数”。

  游戏:小组植树比赛

  师:听我口令,看哪个小组行动最快!

  师:两端都植,间隔长为5厘米时,间隔数和棵数分别是多少?

  师:间隔长为10厘米呢?15厘米呢?

  师:休息会儿,看看总长、间隔长、间隔数和棵数它们之间有什么关系呢?

  引导孩子,发现规律:总长÷间隔长=间隔数

  间隔数+1=棵树(强调“两端都植”)

  出示练习巩固:熊大、熊二要在长100米小路的一侧,每隔5米栽一棵树(两端要植),需要多少棵树呢?

  师:你能帮忙解决这个问题吗?赶紧做到你的练习纸一中

  100÷5=20(个)

  20+1=21(棵)

  2、探究“一端植”的状况

  师:突然,发现路的一端是光头强家呢!(引导学生说“只能植一端”)

  师:也是这个规律吗?赶紧在你的60厘米小路的最左端安上光头强家,填一填学生报告表格一,并填出你们的发现。

  (小组内分工合作:栽树、填表)

  学生汇报:总长÷间隔长=间隔数

  间隔数=棵树(强调“一端植”)

  出示练习:熊大、熊二在长100米的小路的一侧栽树,每隔5米植一棵树,(一端是光头强家),需要多少棵树呢?(那两侧呢?)

  师:你能帮忙解决这个问题吗?赶紧做到你的练习纸二中

  100÷5=20;(20×2=40)

  3、探究“两端不植”的状况

  师:这时,又发现路的另一端是吉吉国王的猴山呢!

  (引导学生说“两端都不植”)

  师:那到底需要多少棵树呢?请用你喜欢的方式表示出来吧!

  学生汇报:总长÷间隔长=间隔数

  间隔数-1=棵数(强调“两端不栽”)

  出示练习:熊大、熊二在小路的一侧植树,每隔5米植一棵树,总共植了20棵(一端是光头强家,另一端是吉吉国王家),这条路多长呢?

  师:你能帮忙解决这个问题吗?赶紧做到你的练习纸一中

  (20+1)×5=105(米)

  师:熊大、熊二就这样一条路一条路的植树,有一天它们又想在一个圆形的池塘身旁植树。

  出示:熊大熊二要在圆形池塘周围植树。池塘的周长是120米,如果每隔10米植一棵,需要多少棵树呢?(引起孩子们思考)

  师:这种状况,又会是什么状况呢?我们下节课之后研究。

  师:这就是我们这天研究的不同状况的植树问题。(板书课题:植树问题)

  三、开放练习,应用方法。

  师:其实,生活中有很多跟植树问题类似的问题呢,比如xxx(引导孩子来说)

  马路问题、楼梯问题、钟表问题、公交站问题、队列问题、锯木头问题。

  四、小结:

  出示:“完美生活,从我做起”(播放欢快音乐)

  师:同学们,说说你们的收获吧!

【《植树问题》教学设计】上海花千坊相关的文章:

植树问题教学设计(精选18篇)03-06

《植树问题》教学设计与反思(精选13篇)05-27

《植树问题》教学设计(通用20篇)11-19

《相遇问题》教学设计11-14

工程问题教学设计09-07

五年级《植树问题》教学设计(精选14篇)02-29

五年级《植树问题》教学设计(通用11篇)02-29

《植树的季节》教学设计08-30

《发现与明确问题》教学设计08-31