上海花千坊

教学设计

《分数乘整数》经典教学设计

时间:2024-05-27 13:16:31 偲颖 教学设计 我要投稿

《分数乘整数》经典教学设计(通用11篇)

  作为一无名无私奉献的教育工作者,时常要开展教学设计的准备工作,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。教学设计要怎么写呢?下面是小编收集整理的《分数乘整数》经典教学设计,欢迎阅读与收藏。

《分数乘整数》经典教学设计(通用11篇)

  《分数乘整数》经典教学设计 1

  教学目标

  使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

  教学重点

  使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

  教学难点

  引导学生总结分数乘整数的计算法则.

  教学过程

  一、设疑激趣

  (一)下面各题怎样列式?你是怎样想的?

  5个12是多少?10个23是多少?25个70是多少?

  (概括:整数乘法表示求几个相同加数的和的简便运算)

  (二)计算下面各题,说说怎样算?

  + + = + + =

  说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

  同学之间交流想法: + + = = 3 3=

  3这个算式表示什么?为什么可以这样计算?

  教师板书: + + = 3=

  二、自主探索(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?

  1.读题,说说 块是什么意思?

  2.根据已有的知识经验,自己列式计算

  三、交流、质疑

  (一)学生汇报,并说一说你是怎样想的?

  方法1: + + = = = (块)

  方法2: 3= + + = = = = (块)

  (二)比较这两种方法,有什么联系和区别?

  联系:两种方法的结果是一样的.

  区别:一种方法是加法,另一种方法是乘法.

  教师板书: + + = 3

  (三)为什么可以用乘法计算?

  加法表示3个 相加,因为加数相同,写成乘法更简便.

  (四) 3表示什么?怎样计算?

  表示3个 的和是多少?

  + + = = = = ,用分子2乘3的积做分子,分母不变.

  (五)提示:为计算方便,能约分的要先约分,然后再乘.

  四、归纳、概括:

  (一)结合 = 3= 和 + + = 3= ,说一说一个分数乘整数表示什么?

  求几个相同加数的和的简便运算.

  (二)分数乘整数怎样计算?

  用分子和分母相乘的积做分子,分母不变

  五、巩固、发展

  (一)巩固意义

  1.改写算式

  + + + =( )( )

  + + + + + + + =( )( )

  2.只列式不计算:3个 是多少? 5个 是多少?

  (二)巩固法则

  1.计算(说一说怎样算)

  4 6 21 4 8

  思考:为什么先约分再相乘比较简便?

  2.应用题

  (1)一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

  (2)美术馆要进行美术展览,有5张画是边长 米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

  (三)对比练习

  1.一条路,每天修 千米,4天修多少千米?

  2.一条路,每天修全路的 ,4天修全路的几分之几?

  六、课后作业

  (一) 的3倍是多少? 的`10倍是多少?

  (二)一个正方形的边长是 米,它的周长是多少米?

  (三)一种大豆每千克约含油 千克,100千克大豆约含油多少千克?1吨大豆呢?

  七、板书设计

  分数乘整数

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

  例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?

  用加法算: + + = = = (块)

  用乘法算: 3= + + = = = = (块)

  答:3人一共吃了 块.

  分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  《分数乘整数》经典教学设计 2

  教学内容:

  教科书第1~2页,分数乘整数。

  教材简析:

  本节课是在学生掌握整数乘法,理解分数的意义和基本性质,能正确计算分数加减法的基础上进行教学的,所学内容属于分数中的基本知识和技能,这些知识不仅可以解决有关的实际问题,而且也为学生进一步学习分数除法、分数四则混合运算奠定基础。

  教学目标:

  1.使学生通过自主探索,了解分数乘整数的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数乘整数的计算方法。

  2.使学生在探索分数乘整数计算方法的过程中,运用已有知识和经验主动进行探索性思考,并进行分析和归纳。

  3.在探索计算方法的过程中,体验探索学习的乐趣,获得成功的体验。

  教学重、难点:

  掌握分数乘整数的算理和计算方法,能正确地进行计算。

  教学过程:

  1.创设情境,揭示课题。

  (1)出示情境图。

  师:阳春三月,同学们打算举行一次风筝制作展示活动。请看,这是小明同学制作的风筝。仔细看图,你了解到哪些信息?根据这些信息,你能提出什么数学问题?

  (2)探索分数乘整数的意义,揭示课题。

  师:求制作这个风筝尾巴用多少布条,你会列式吗?

  +++++。生2:×6。

  21生3:6×。

  2生l:师:①和②与我们以前学过的算式有什么不同?生:都是分数乘整数。

  师:分数乘整数的意义与整数乘法的意义是相同的,都是求几个相同加数的和的简便运算。6个写成1可以2111×6,也可以写成6×。这就是我们今天要学习的分数与整数相乘。(板书课题:分数与整数相乘)2221/4

  【评析】分数乘整数比较抽象,小学生学习起来容易感到枯燥。创设现实情境可以激发学生的学习兴趣。同时,鼓励学生提出问题,培养了学生发掘信息、发现问题的数学素养。

  2.算法交流,分析比较。

  (1)学生尝试独立计算。师:尝试计1×6,做完后小组内交流,交流时要把道理说清楚。

  (2)交流算法。

  1×6=×6=3(米)②×6=+++++==3(米)?66③×6===3(米)④×6=(米)212①师:你认为④正确吗?为什么?

  16是3,而不是。2121师:你能联系已有知识说明×6的积为什么是3吗?

  生1:因为+++++=3,所以×6=3。

  生2:是1个,6个是,就是3。

  2222生:6个师:在方法③中,为什么分母2不变,单单只把分子1和6相乘呢?(课件演示方法③的计算道理。)

  【评析:给学生创设足够的探究时空,放手让学生运用已有的知识和经验自主探究计算方法,每一点知识都是通过学生的主观努力获得的。在此基础上引导学生生生交流、师生交流,教师仅在学生的疑惑处或计算的关键处给以提示或强调。这样设计极大程度地发挥了学生的主体性,学生中产生了许多富有个性的算法,有效地落实了算法多样化这一理念。】

  3.沟通优化,促进发展。

  (1)算法的初步优化。(出示:5×12)3(学生尝试独立计算后全班汇报交流。)①×12=+++++++++++=202/4

  ②5×12=203师:请同学们评价一下这两种方法。生:用相加的计算方法太麻烦,师:为什么不用转化成小数的方法计算?生:因为5不能化成有限小数,所以转化成小数的方法不可取。3师:这两种方法在计算中都存在很大的局限性,看来直接相乘的方法简便,易于计算。

  (2)升华计算方法。

  师:能不能在原有方法的基础上,想办法使计算再变得简单一些?(课件出示简便算法:先约分再计算。)

  (3)总结计算方法。

  师:观察刚才的'计算过程,根据讨论,你认为分数与整数相乘,可以怎样计算?在小组里交流。师(小结):分数与整数相乘,要用分数的分子与整数相乘,分母不变,计算时,能约分的要先约分再计算。

  【评析:在计算课中如何让学生既能知算理,又能晓算法,这是计算课教学的关键所在。在学生探究得出几种不同的计算方法后,让学生亲历5×12的计算过程,这样算法优化便是在学生计算、观察、比较3的基础上自然生成的,从而真正把学生推向主动活泼的探究舞台。】

  (4)巩固。独立计算10×,×36,×21。

  联系实际,灵活运用。

  (1)学生独立完成“自主练习”第1题。

  ①学生审题,并按要求填空。

  ②集体订正,并要求学生说出从加法算式到乘法算式的根据。

  (2)学生完成“自主练习”第2题。

  订正时让学生说说题意并列算式,说乘法算式的意义并口算出结果。

  【评析:通过基本练习,既巩固和加深了对知识的理解,学会了运用,同时也发展了学生的思维,把课堂的知识和生活紧密结合,达到了巩固知识、培养技能、激发兴趣、发展思维的目的。】

  5.课堂总结,交流收获。

  师:时间过得真快,一节课就要结束了,大家有什么收获?

  【评析:有意识地培养学生的抽象概括能力,把思维的空间留给学生,把说的机会让给学生,让学生学会自我反思。】

  《分数乘整数》经典教学设计 3

  一、教学目标

  1.知识与技能目标:掌握分数乘整数的两种意义及分数乘整数的运算法则。

  2.过程与方法目标:理解一个数乘分数的意义,知道求一个数的几分之几可以用乘法计算。

  3.情感态度价值观目标:培养学生理解知识的能力和计算能力:培养学生逻辑推理能力,渗透择优思想。

  二、教学重难点

  重点:理解分数乘整数的两种意义,以及分数乘整数的运算法则。

  难点:掌握分数乘整数法则的推导过程。

  三、教学过程

  尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是分数乘整数,下面我将正式开始我的试讲。

  上课,同学们好,请坐。

  【导入】

  同学们,你们都喜欢过生日嘛,前几天也是小心的生日,妈妈给买了一个大蛋糕,我们一起来看一看,仔细观察这张图片,你能发现哪些数学信息?请你来说观察得非常细致,他们每人吃了2/9个蛋糕,那你们能根据这个信息提出一个数学问题吗?请你来说,你提的这个问题可真有价值,三个人一共吃了多少个蛋糕?那我们列范式就是,啊对,三个2/9是多少?所以用2/9x3。

  我们一起来观察这个算式,它有哪些特点呢?请你来说,观察的非常仔细,请坐。这个算式是分数乘整数,那像这类的算式同学们会计算吗?看同学们既疑惑又好奇的表情,这节课就让我们一起走进数学王国,去探究分数乘整数的奥秘。

  【新授】

  活动一:

  这个算式我们到底该如何结算?同学们先独立思考,再小组合作,遇到困难可以借助我们学具袋中的小圆片进行摆一摆,分一分,老子相信小杜的力量是强大的。讨论完成,以端正的坐姿来示意老师。看那个小组的方法,又好又快。开始。老师看同学们都已经坐端正了,哪位同学愿意向大家分享一下你们小组的讨论成果,老师看一组的同学手举的像小树林一样,那就1组的三号同学请你来说。你们小组的动手能力可真强,请多是运用小圆片来计算的,先把小圆片平均分成九份,每人吃了两份,一共涂了这样的三个两份,六份一共涂上了颜色。就是这个圆形卡片的6/9,所以他们一共吃了6/9个蛋糕。其他小组还有不同的方法吗?三段二号同学请你来说,你这会用联系的眼光看待问题,请坐,是运用连加的方法,2/9x3就是,啊三个2/9香加2/9+2/9袋加2/9等于6/9,也就是约分等于2/3个。谁还有不同的想法,你6组一号同学请你来说,你这方法可真有创意。赶紧上来为大家展示一下你的计算过程。

  活动二:

  同学们都看明白了吗?那这每一步又代表着怎样的含义呢?我们一起来探究一下。

  2/9x3表示的是三个2/9相加,所以等于2/9+2/9+2/9。然后呢?对呀,我们就可以运用同分母分数加法来计算了,分母不变,分子相加变成了2/9+2,再加二。接下来我们该如何计算,谁来说一说你的想法,请你来说。小脑袋可真灵活,分子上的三个二相加,表示三个二是多少所以用乘法算式2x3。2x3等于六,所以结果等于6/9,9分之六,能够约分,我们在约分成最简分数2/3个。同学们,你们都想到这个方法了吗?赶紧带在练习本上写一写,和同桌之间说一说。

  活动三:

  老师看同学们都已经完成了,那我们再来仔细观察一下这个方法的阶段过程,这个六是怎么得到的呢?谁来说一说?请你来说。对呀,是2x3的积。那为什么是2x3呢?是的,以为把一个蛋糕平均分成九份,每人吃两份,三个人也就是3个2份,就是2x3。我们仔细观察,这个分数和整数叫二和三是从哪里来的?对呀,这二正好是2/9的分子,三是这个整数,看来分数乘整数,用分数中的分子去乘这个整数,分母不变。

  其他同学还有更简便的方法吗?请你来说,你的小脑袋可真灵活,这样我们能约分的可以先约分,再计算,结果是一样的,像2/9x3,就等于九分加2x3,因为这九和三可以约分,我们通过约分直接就是2/3x1,,这样就更简便,而且不影响结果。同学们赶紧的'用这种方法在练习本上写一写,和同桌之间互相交流一下。其实这个过程是我们思考的过程,我们在书写的时候一般都会省略不写。

  结合我们刚刚探索过程,谁能来试着总结一下分数乘整数的计算方法呢?请你来说跟我解答及经验又准确,请坐。分数乘整数,用分数中的分子与这个整数相乘,得到的积作为分子,分母不变,能约分的先约分再计算。

  观察一下黑板上这些内容,以上就是本节课所要学习的体积和体积单位。

  【巩固练习】

  接下来老师就来考一考大家,同学们敢不敢接受老师的挑战?这么自信,请看大屏幕计算一下这两道题,看哪位同学计算得又快有准确。

  老师看同学们都已经完成了看来,谁来说一说第一题的答案?请你来说5/ 12,同学们都同意他的答案吗?看来这么简单的问题已经难不倒大家了,我们一起来看第二题,我们一起说出他的答案。看来同学们对这节课的知识掌握的非常扎实了请看大屏幕。

  【课堂小结】

  不知不解本节课已经接近了尾声哪位同学来说一说本节课都有那些收获呢?班长你手举得最高你来说,他说啊通过本节课学习到了分数运算当中一种新的运算法则,分数乘整数,用分数中的分子与这个整数相乘,得到的积作为分子,分母不变,能约分的先约分再计算。看来啊本节课上特听讲非常认真,请坐!

  【作业布置】

  那接下来老师老师给大家布置一个小任务,课下去利用今天所学习知识思考一下,我们全班40人每人吃蛋糕的三分之一需要吃掉多少蛋糕呢?下节课一起来交流讨论一下。

  本节课就先上到这,下课,同学们再见!

  尊敬的各位考官,我的试讲到此结束,感谢各位考官的耐心聆听!

  《分数乘整数》经典教学设计 4

  教学目标 :

  1. 通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。

  2. 通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。

  3. 通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。

  教学重点:

  掌握分数乘分数的计算方法,并能熟练计算。

  教学难点:

  理解分数乘分数的乘法意义及算理。

  教具准备:

  多媒体课件。

  教学过程:

  一、导入新课(激发兴趣,明确目标)

  1. (课件出示一个正方形)这个正方形我们可以用数字“1”表示。现在涂色部分是它的几分之几? ( )

  2. 如果取这 的 ,现在得到的是整个正方形的几分之几?(看图得出结论 )

  3. 如果再取这 的 ,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)

  【设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。】

  二、合作探究(小组合作,解决问题)

  出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)

  (一)探究几分之一乘几分之一的算理算法

  1. 求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的'整数乘分数的意义进行类推)

  求一个数的几分之几,我们可以用乘法来计算。

  2. 等于多少呢?说说你的想法,并把你的想法在纸上写下来。

  3. 学生进行尝试(可引导学生用画图的方式来解释自己的想法)。

  4. 进行交流反馈

  重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固

  把1个正方形看作1公顷,先平均分成2份,每份表示 公顷,再把 公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是 公顷。

  5. 得出结果

  根据大家的想法, 。我们再来看看本节课开始的图形,是不是也可以用乘法算式来表示?

  6. 猜想计算方法

  观察这几个算式,说说你发现了什么?你觉得几分之一乘几分之一可以怎样计算?这个方法可以推广到所有分数乘分数的计算中吗?

  【设计意图:尊重学生,培养学生的学习探索能力是很重要的。本节课的教学除了有之前所学分数的意义作为基础之外,学生还在前一课时明确了整数乘分数可以用来表示一个数的几分之几是多少,因此在本堂课中完全可以放手让学生们自己去思考、学习、尝试,教师只要起到一定的点拨作用就可以了。】

  (二)探究几分之几乘几分之几的算理算法

  1. 尝试猜想

  请你试着用这个方法解决第二个问题:求 公顷的 ,用乘法算式表示就是 。根据我们刚才的想法,结果应该是?( 公顷)。这个猜想正确吗?能不能想办法来进行验证?在老师提供的练习纸中画一画、算一算,并和同桌进行交流,有困难的学生也可以打开课本第4页看一看。

  2. 探究验证。学生自行探索分数乘法的计算方法。(探索完成的学生可以完成例3做一做第2题进一步验证)

  3. 验证反馈

  (1)请几个采用不同验证方法的学生进行一一展示。

  (预计方法:A. 画图(图形或线段);B. 转化成小数再进行计算;C. 利用分数的意义进行计算)

  (2)请已经完成例3做一做2的学生说一说自己计算的结果及得到的想法。

  4. 得出结论

  看来咱们的猜想是正确的,分数乘分数如何计算?在同学讨论回答后得出结论:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。

  【设计意图:猜想——举例——验证——得出结论是学生学习数学的一种方式,在本节课的设置上先提供了探索的范例,再让学生提出猜想,最后通过举例、验证形成共识,得到分数乘分数的计算法则,理解算理,使学生既获得了探索的体验,又掌握了基础知识。】

  三、展示交流(展示交流,调拨归纳)

  简化计算过程

  根据我们所得的结论,试着解决下面的问题

  出示例4:无脊椎动物中游泳最快的是乌贼,它的速度是 千米/分。

  (1)李叔叔的游泳速度是乌贼的 。李叔叔每分钟游多少千米?

  (2)乌贼30分钟可以游多少千米?

  1. 读题,独立列式并解答。

  2. 反馈

  (1)题(1)展示不同的计算过程:A、先计算再约分;B、先约分再计算。

  (2)题(2)明确整数与分数相乘,可以在计算时直接将整数和分母约分,结合学生的情况说明约分的书写格式。

  (3)对比体会得出结论:在计算时,先仔细观察数的特征,能约分的先约分再乘,会比较简单。

  3. 练习

  例4做一做1。

  【设计意图:培养简便计算的意识对于提高学生计算的准确性和速度至关重要。让学生通过计算和对比体会到在分数乘法中先约分再计算比较简单,对培养学生的简算意识很有帮助。】

  四、拓展总结(应用拓展,盘点收获)

  1. 基础练习

  (1)先看数再计算(练习一6、7两题)

  反馈校对、纠错。

  在反馈时通过对比、纠错让学生明白先观察数的特征,可以约分的先约分再计算,这样能又对又快地得到结果。

  预计错题,估计错例:由于4和 的分子相同,学生有可能会将整数4与分子4相约分,在计算 时,结果错算成 。应该使学生明确:整数与分数相乘,可将整数与分母约分(也就是把整数看成分母是1的分数),再进行计算。

  【设计意图:将练习一的6、7两题并在一起,并将题目的考查形式改成先看数再计算,有助于学生形成计算的审题习惯。让学生发现通过观察可以感知数的特征并进行约分,这样可以让计算变得更加简单,正确率也可以得到更大的提升。第6题不以改错的方式出现,而直接以计算题的方式出现,是出于不强加错的思考,来自于学生的错例,学生更易于记在心上。】

  (2)完成例3、例4做一做剩下的题

  反馈校对、纠错。

  在校对答案后,可以进行小结,使学生进一步明确:分数乘法就是求一个数的几分之几是多少的运算。

  2. 练习提升

  在○里填“>”“<”或“=”。想一想,哪些式子,你不计算就可以直接填出来?

  ○ ○ ○ ○

  反馈:请学生说说自己的想法,哪些式子可以不计算就直接得出结果。

  (1)题1、题3主要引导学生从分数乘法的意义来理解;

  (2)题2、题4主要是对分数计算方法的巩固。

  【设计意图:计算的练习往往比较枯燥,这时题目的设计就显得比较重要了。本题的设计让学生们在练习反馈中既对分数乘法的意义进行了回顾,又将整数乘分数和分数乘分数的意义进行对比,还对计算方法进行了巩固和应用,对学生的思维的拓展也是大有益处的。】

  3.拓展总结

  这节课我们学习了什么?我们是怎样得出这些结论的?

  没错,“猜想——举例——验证——得出结论”是我们学习数学很有效的方法,在以后的学习中,同学们可以用这样的思路去学习更多的数学知识。

  【设计意图:在对本节课的小结中,对猜想——举例——验证——得出结论的数学学习方法进行回顾,对于六年级的学生来说很重要。】

  《分数乘整数》经典教学设计 5

  教学内容:

  教材第2页例1练习一1~3。

  教学目标:

  1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。

  2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。

  3、在探索与交流活动中培养观察、推理的能力。

  教学重点:

  理解他数乘整数的意义,掌握分数乘整数的计算方法。

  教学难点:

  理解分数乘整数的计算方法。

  教学过程:

  一、复习旧知,引出课题。

  1、复习题。

  (1)列式并根据题意说出算式中的两个乘数各表示什么。

  5个12是多少? 9个11是多少? 8个6是多少?

  提问:通过解决这三道整数乘法计算题,你有什么想说的吗?

  (整数乘法是表示几个相同加数的和的简便运算)

  (2)计算:

  计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。

  2、引出课题。

  这题我们还可以怎么计算?今天我们就来学习分数乘法。

  二、创设情境,探究分数乘整数。

  1、教学分数乘整数的意义。

  出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个?

  (1)分析演示

  题中的:小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个意思什么?(每人吃了整个蛋糕的 )

  确定标准量(单位1)和比较量。每人吃了整个蛋糕的 ,是把整个蛋糕看作标准量(单位1);把每人吃的份数看作比较量。

  借助示意图理解题意

  根据题意列出加法算式 + +

  (2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。

  教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。

  (3)比较 和125两种算式异同

  提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。

  通过讨论使学生得出:相同点:两个算式表示的意义相同。

  不同点: 是分数乘整数,125是整数乘整数。

  (4)概括总结

  教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)

  2、教学分数乘以整数的计算法则。

  (1)推导算理:由分数乘整数的意义导入。

  问: 表示什么意义?引导学生说出表示求3个 的和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的`加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)

  (2)引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)

  观察结果: 的分子部分23就是算式中 的分子2与整数3相乘,分母没有变。

  (3)概括总结:请根据观察结果总结 的计算方法。(互相讨论)

  汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。

  根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。

  3、反馈练习:看图写算式:做一做、练习一第1题。

  三、全课小结。

  《分数乘整数》经典教学设计 6

  课题:

  分数乘整数

  教学内容:

  教材第8页的例1,第9页的例2以及“做一做”,练习二中的第1、2题。

  教学目标:

  让学生掌握分数乘正整数的计算方法,并能准确地进行计算。

  重难点、关键

  分数乘整数的`计算方法。

  教学准备:

  电脑课件

  教学过程:

  一、旧知铺垫

  1、计算下列各题

  1/5+ 2/5 3/10+1/10+7/10 3/14+3/14+3/14

  过程要求:

  (1) 写出计算过程。

  (2) 说一说分数加法的计算方法。

  2、想一想,能不能把 3/14+3/14+3/14改写成乘法算式呢?

  二、探索新知

  1、教学例1

  (1) 出示例题

  根据题意,电脑课件呈现示意图。

  (2) 根据题意列出解答算式:

  2/11+ 2/11+ 2/11= 2+2+2/11 = 6/11

  2/11×3= 6/11

  (3)探索分数乘整数的计算方法。

  师:2/11×3= 6/11,说一说你是怎么想的?

  ① 学生在小组交流各自的想法

  ② 小组讨论后反馈思维的过程和结果

  教师板书:2/11+ 2/11+ 2/11= 2+2+2/11 = 6/11

  ③总结分数乘整数的计算方法。

  A、 学生口述分数乘整数的计算方法;

  B、 教师整理并板书:

  分数乘整数,整数与分子相乘的乘积作分子,(数学教案 )分母不变。

  2、教学例2

  计算:3/8×6

  (1) 学生独立计算。

  (2) 交流计算方法和步骤。

  (3)归纳:能约分的要先约分,再计算。

  三、巩固练习

  1、完成课本“做一做”。

  (1) 学生独立完成,然后计算过程和结果。

  (2)第3题,说一说你是怎样计算的?怎样想的?

  2、课本练习二第1、2题

  四、课后作业设计

  计算

  5/6× 7 4/13×8 3/8×3 2/15×4

  3/10×5 4/9 ×3 27×2/3 16×5/32

  五、列式计算

  1、3个2/5是多少?

  2、7/12的6倍是多少?

  3、5/14扩大7倍以后是多少?

  4、3/16与24的积是多少?

  课后反思:本部分知识相对来说简单,学生接受的比较快,容易掌握。

  《分数乘整数》经典教学设计 7

  教学内容:

  教科书第8―9页的例1、例2,完成“做一做”及相应的练习。

  教学目标:

  1、利用类推法引导学生理解分数乘整数的意义与整数乘法的意义 相同;在此基础上通过自主探索、小组合作归纳并掌握分数乘整数的计算法则,且能正确地进行计算。

  2、培养学生合作探究的意识及良好的逻辑思维能力。

  3、让学生在课堂学习中交流学习数学的感受,获得学习成功的体验。

  教学重点:

  掌握分数乘整数的计算法则。

  教学难点:

  计算法则的推导

  教学方法:

  类推法、猜想验证法、归纳法、小组合作法

  教学过程:

  一、 复习引入

  1、 师口述:

  ① 5个12是多少?怎样列式?(12×5)

  ② 6个0.5呢?(0.5×6)

  ③ 3个 是多少?你会列式吗?( ×3)

  师:这是个新内容,大家也会列式,真了不起。知道我们刚才用的是什么数学方法吗?(类推法,类推法就是由原来的旧知根据它们之间的相似处类推出和它实质一样的新知识。这是我们学习数学时常用的一种方法)

  2、 引入:这就是今天我们要一起研究的分数乘法中的第一个问题:分数乘整数(板书课题)

  二、 合作探究、归纳法则

  1、 师:看到这个课题,你都想知道关于它哪些方面的知识?

  生1:分数乘整数该怎样计算?

  生2:在计算时有什么要求或要注意的地方?

  师:同学们的想法可真好。那就请带着这些问题进入我们今天的时空隧道吧。

  2、 师:大家知道吗?出示:

  人跑一步的距离相当于袋鼠跳一下的 ,人跑3步的距离是袋鼠跳一下的几分之几?

  你们有办法解决这个问题吗?好,大家先独立思考,有想法后可以和周围的同学交流一下。

  3、 师:谁愿意先来发表一下你的看法?

  生1:我列的是加法算式: + +

  同分母分数相加减,分母不变,只把分子相加减。

  即: + + = =

  生2:我列的是乘法算式: ×3

  我想:要求人跑3步的距离是袋鼠跳一下的几分之几,就是求3个 是多少?3个 就是 。

  即: ×3=

  生3:老师,我列的也是乘法算式: ×3

  但我是这样计算的:用分子“2”和整数“3”相乘得6,写在分子的位置上,分母不变。和他们结果一样,也得 。即: ×3= =

  师:同学们的'做法和想法都不错,哪怕有的是猜想也很了不起!如果大家把乘法和加法联系起来思考,大家的思路会更明朗的。

  ×3,大家说就是求3个 是多少,我们就可以写成3个 相加的形式,即: ×3= + + = = = 。现在大家再来看 ×3的计算过程,清楚了吧。其实在今后计算时,可以把借助加法思考的这些过程省略,写成: ×3= =

  4、 师:观察分数乘整数的计算过程,同桌说一说我们是怎样计算分数乘整数的?

  生:分数和整数相乘,用分子和整数相乘的积作分子,分母不变。

  师:谁来再说一说?(多找几个学生说说,加深理解和记忆)

  三、 运用新知、巩固练习

  师:现在你会计算分数乘整数了吗?我们先闯第一关:

  ⑴计算: ×6(学生独立计算)

  ⑵成果展示:生1: ×6= =

  生2: ×6= = =

  生3: ×6= =

  师:还有不同的做法吗?好,谁愿意来评价一下这几位同学的做法?

  生1:这几位同学的计算方法掌握得都不错,但是第一位同学到最后也没有约分,我觉得这是不对的。

  生2:我最欣赏第三位同学的做法,因为他在计算过程中进行了约分,这样计算起来比较简便。

  《分数乘整数》经典教学设计 8

  【教学目标】

  1.使学生通过自主探索,了解分数乘整数的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数乘整数的计算方法。

  2.使学生在探索分数乘整数计算方法的过程中,运用已有知识和经验主动进行探索性思考,并进行分析和归纳。

  3.在探索计算方法的过程中,体验探索学习的乐趣,获得成功的体验。

  【教学重难点】

  理解分数乘整数的意义及分数乘整数计算方法的推导过程,能准确地进行计算。

  【教学准备】

  多媒体课件

  【教学过程】

  一、创设情境,自主探索

  谈话:同学们,学校要举行一次小手艺展示活动,班里有一位小强同学也想参加。看,他准备制作两个漂亮的风筝,这两个风筝还带有长长的尾巴呢。可就在制作这个风筝尾巴的时候,小强遇到困难了,我们都来帮帮他,好吗?(课件出示信息)

  谈话:从图中你收集到了哪些数学信息?

  谈话:你能根据这组信息,提出一个数学问题吗?全班交流,

  板书学生所提有价值问题:

  做小鸟风筝的尾巴,一共需要多少米布条?(板书)

  (2)做小鱼风筝的尾巴,一共需要多少米布条?(板书)

  【设计意图】创设贴近学生生活实际的情境,以小强遇到困难了,我们都来帮帮他为契机,激发学生的学习兴趣,调动起学生自主探究解决问题的热情,为学生理解、感悟知识奠定基础。

  二、算法交流,分析比较

  (一)探索分数乘整数的意义。

  独立思考,自主探索。

  谈话:求做小鸟风筝的尾巴,一共需要多少米布条,你会列式吗?

  学生可能会出现以下算式:(根据学生的回答课件随机出示)

  追问:你为什么这样列式?

  相加的和,也可以用乘法计算?

  明确:相同整数连加可以用乘法算式表示,由此可以联想到相同分数连加也可以用乘法算式表示。联想是一种很有意义的学习方法。所以分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。

  谈话:比较

  这组乘法算式,跟我们以前学的.有什么不同?

  导出课题:分数乘整数(板书)

  【设计意图】分数乘整数的意义是为探究分数乘整数的计算方法服务的,在教学中,从做风筝尾巴要用多少米布条的实际问题为起点,引出分数乘整数的计算问题。把原来的乘法概念扩展到分数范围,激活了学生已有的知识经验,沟通了新旧知识的联系,初步了解了分数乘整数的意义。

  (二)探索分数乘整数的计算方法。

  1.独立计算感知算法。

  谈话:你能尝试计算

  1/2×5吗?请你在练习本上独立完成,写完之后在小组内交流一下自己的想法。

  2. 算法交流,分析比较

  谈话:你能交流一下你的算法吗?学生可能会出现以下方法:

  (根据学生回答课件随机出示)

  三、沟通优化,促进发展。

  1.(1)算法的初步优化

  谈话:你会计算7/18×9吗?请用自己喜欢的方法计算。

  学生尝试独立计算后全班汇报交流。(根据学生回答课件随机出示)

  谈话:比较一下这两种方法,你有什么感受?

  小结:用相加和转化成小数的方法在计算中都存在很大的局限性,看来直接相乘的方法简便,易于计算。学生小结分数乘整数的计算方法。

  (2) 探索计算中的简便方法

  谈话:你能独立解决做小鸟风筝的尾巴,一共需要多少米布条这个问题吗?(学生独立算,然后小组交流)。

  《分数乘整数》经典教学设计 9

  教学目标:

  1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求这个数的几分之几是多少。

  2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

  3.能利用所学知识解决生活中的简单问题,并进一步培养学生的'分析和推理能力。

  教学重点:

  掌握分数乘整数的计算方法。

  教学难点:

  理解分数乘整数和一个数乘分数的意义。

  教具准备:

  多媒体课件。

  教学过程:

  一、导入新课(激发兴趣,明确目标)

  课件出示情景图:仔细观察,从图中能得到哪些数学信息?这里的 个表示什么?你能利用已学知识解决这个问题吗?想一想,你还能找出不一样的方法验证你的计算结果吗?

  二、自主学习(自主学习,生成问题)

  小组自主研究计算方法,交流汇报。

  预设:(1) (个);(2) (个);(3) (个);(4)3个 就是6个 就是 ,再约分得到 (个)。(根据学生发言依次板书)

  比较分析

  师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设

  生1:每个人吃 个,3个人就是3个 相加。

  生2:3个 个相加也可以用乘法表示为 。

  提出质疑:3个 相加的和可以用乘法计算吗?为什么?

  预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

  引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

  师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

  引导说出:这两个式子都可以表示求3个 相加是多少。

  师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

  归纳小结

  通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。

  《分数乘整数》经典教学设计 10

  教材分析

  《分数乘整数》是义务教育课程标准实验教科书小学数学六年级上册第二单元的内容。从学生已有的知识经验出发合理地使用教材,本课教学重点是让学生理解算理、掌握计算法则。

  学情分析

  本课是在整数乘法和分数加法的基础上学习的,通过直观操作帮助学生理解算理并正确进行计算,在此基础上拓宽学生的知识面。

  教学目标

  知识与能力:

  在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

  过程与方法:

  通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

  情感态度与价值观:

  引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的.魅力,领略到美。

  教学重点和难点

  教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  教学难点:引导学生总结分数乘整数的计算法则。

  教学过程

  《分数乘整数》经典教学设计 11

  教学目标:

  1、学生通过自主探索,了解分数与整数相乘的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数与整数相乘的计算方法。

  2、学生进一步增强运用已有知识和经验探索并解决问题的意识,体验探索学习的乐趣。

  教学重点:

  初步理解并掌握分数与整数相乘的计算方法

  教学难点:

  了解分数与整数相乘的意义

  教学过程:

  一、复习

  1、考考你的听力(口算)

  1/3+1/32/5+2/51/10+1/10+1/101/6+1/6

  2、查一查:你对分数认识的掌握情况

  请你在下面1米的绸带上先涂出1个3/10米,在用大括号

  表示出来。(学生动手涂一涂,再画一画。)

  交流。

  二、新授

  1、谈话:刚才同学们已经顺利通过了两关,接下来我们要

  闯第三关了。请看大屏幕。

  2、投影显示:在“三八”妇女节那天,小芳为了给妈妈庆祝节日,做了一些绸花。做一朵绸花要用3/10米的绸带。

  (1)做3朵这样的绸花,一共要用几分之几米的绸带?

  学生读题,分析题意

  <1>涂一涂:你们能像刚才那样在1米的绸带上表示出做3朵绸花所用的米数吗?试试看!(学生动手涂一涂)

  <2>看一看:谁愿意和大家交流一下,你是怎么涂的,为什么这样涂?

  <3>说一说:从这图上我们可以看出求”3朵这样的绸花一共要用几分之几米的绸带,就是要求什么?

  (根据学生回答板书:求3个3/10是多少?)

  <4>试一试:解决这个问题我们可以怎样列式?

  学生可能:3/10+3/10+3/103/10×33×3/10

  小结:求3个3/10相加的和可以用加法来计算,也可以用乘法来计算。以后我们求几个相同分数的和也同样可以用乘法来计算。(板书)今天我们就一起来学习分数乘法中的分数与整数相乘。(板书课题)

  三、探究算法

  1、谈话:我们刚才一起闯过了第三关,知道求几个相同的分数的和可以用乘法来计算。现在我们来闯第四关。

  2、尝试计算3/10×3

  (1)你能算出3/10×3的积吗?

  如果学生能直接说出它的积那就追问:你能联系已有的知识从不同的角度说说为什么3/10×3=9/10吗?

  3/10+3/10+3/10=3+3+3/10

  (2)根据学生回答板书:3/10×3=

  =3×3/10=9/10(米)

  (3)观察、归纳算法:根据刚才的讨论,你认为应该怎样算

  3/10×3的积?

  根据学生的回答小结:计算3/10×3时,可以用分子3与整数3相乘的积作分子,分母不变是10。那么通常在计算过程中“3/10+3/10+3/10=3+3+3/10”这一思考过程可以省略不写。

  2、出示:如果小芳做5朵这样的.绸花,一共要用几分之几米的绸带?

  (1)试一试:你能用今天所学的知识来解决这一问题吗?谁愿意到

  黑板上来试一试?

  (2)评一评:5×3/10=5×3/10=15/10(米)

  5×3/10=5×3/10=3/2(米)

  (3)强调:计算结果不是最简分数时要通过约分化成最简分数。

  (4)引导先约分再计算

  请同学们仔细观察分子5×3与分母10有什么联系?

  (10与5里有最大公因数几?10与3里只有公因数1),所以在这一题里我们还可以这样约分(板书约分的过程)

  (5)比较:哪一种约分简便?你们喜欢哪一种?那么在计算时就用我们喜欢的方法:先约分再计算。

  四、比较、概括

  1、谈话:请你们仔细观察这两个乘法算式,然后用自己的话来说一说“分数与整数相乘”可以怎样来计算?也可以在小组内交流一下自己的看法。

  2、交流、汇报。谁来说说自己的看法?(根据学生的回答板书)

  五、巩固练习

  今天同学们的表现不错,已经勇闯四关。现在我们进入最后一关,那就是“大练兵”。

  (1)看图写算式(图略)练习八中的第一题。

  学生独立填空,然后交流。

  (2)学生独立完成第39页的练一练中的第一题。

  学生独立填空,然后交流。

  (3)先提出问题,再列式计算

  常老师每天骑电动车上班,电动车的速度是每分钟行1/4千米?

  六、全课总结:通过这节课的学习,你有什么新的收获?

  求几个相同的分数的和可以用乘法计算。

  分数与整数相乘的方法。

【《分数乘整数》经典教学设计】上海花千坊相关的文章:

分数乘整数教学设计(精选11篇)08-30

分数乘整数教学反思总结03-29

《小数乘整数》教学设计06-21

分数乘分数教学设计12-20

分数乘以整数的教学设计03-31

冀教版分数乘整数优秀教学设计(精选5篇)05-18

数学教案之分数乘整数04-03

分数除以整数教学设计(精选13篇)09-14

关于《分数乘分数》教学设计范文11篇08-30

冀教版《分数乘分数》教学设计参考11-20