上海花千坊

小升初

小升初数学:应用题综合训练

时间:2024-06-08 01:31:40 赛赛 小升初 我要投稿

小升初数学:应用题综合训练

  应用题是用语言或文字叙述有关事实,反映某种数学关系(譬如:数量关系、位置关系等),并求解未知数量的题目。以下是小编整理的小升初数学:应用题综合训练,希望对大家有所帮助。

小升初数学:应用题综合训练

  小升初数学:应用题综合训练 1

  133.在一环形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到达B点,又过8分钟两人再次相遇.甲、乙环行一周各需要多少分钟?

  解:甲乙合行一圈需要8+4=12分钟。乙行6分钟的路程,甲只需4分钟。

  所以乙行的12分钟,甲需要12÷6×4=8分钟,所以甲行一圈需要8+12=20分钟。乙行一圈需要20÷4×6=30分钟。

  134.甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍.已知甲上午8点经过邮局,乙上午10点经过邮局,问甲、乙在中途何时相遇?

  解:我们把乙行1小时的路程看作1份,那么上午8时,甲乙相距10-8=2份。

  所以相遇时,乙行了2÷(1+1.5)=0.8份,0.8×60=48分钟,所以在8点48分相遇。

  135.甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山.他们两人下山的速度都是各自上山速度的2倍.甲到山顶时,乙距山顶还有400米,甲回到山脚时,乙刚好下到半山腰.求从山顶到山脚的距离.

  解:假设甲乙可以继续上行,那么甲乙的速度比是(1+1÷2):(1+1/2÷2)=6:5

  所以当甲行到山顶时,乙就行了5/6,所以从山顶到山脚的距离是400÷(1-5/6)=2400米。

  136.一辆公共汽车载了一些乘客从起点出发,在第一站下车的'乘客是车上总数(含一名司机和两名售票员)的1/7,第二站下车的乘客是车上总人数的1/6,.......第六站下车的乘客是车上总人数的1/2,再开车是车上就剩下1名乘客了.已知途中没有人上车,问从起点出发时,车上有多少名乘客?

  解:最后剩下1+1+2=4人。那么车上总人数是

  4÷(1-1/2)÷(1-1/3)÷……÷(1-1/6)÷(1-1/7)=28人

  那么,起点时车上乘客有28-3=25人。

  137.有三块草地,面积分别是4亩、8亩、10亩.草地上的草一样厚,而且长得一样快,第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问第三块草地可供50头牛吃几周?

  解法一:设每头牛每周吃1份草。

  第一块草地4亩可供24头牛吃6周,说明每亩可供24÷4=6头牛吃6周。

  第二块草地8亩可共36头牛吃12周,说明每亩草地可供36÷8=9/2头牛吃12周。

  所以,每亩草地每周要长(9/2×12-6×6)÷(12-6)=3份

  所以,每亩原有草6×6-6×3=18份。

  因此,第三块草地原有草18×10=180份,每周长3×10=30份。

  所以,第三块草地可供50头牛吃180÷(50-30)=9周

  解法二:设每头牛每周吃1份草。我们把题目进行变形。

  有一块1亩的草地,可供24÷4=6头牛吃6周,供36÷8=9/2头牛吃12周,那么可供50÷10=5头牛吃多少周呢?

  所以,每周草会长(9/2×12-6×6)÷(12-6)=3份,原有草(6-3)×6=18份,那么就够5头牛吃18÷(5-3)=9周

  138.B地在A,C两地之间.甲从B地到A地去,出发后1小时,乙从B地出发到C地,乙出发后1小时,丙突然想起要通知甲、乙一件重要的事情,于是从B地出发骑车去追赶甲和乙.已知甲和乙的速度相等,丙的速度是甲、乙速度的3倍,为使丙从B地出发到最终赶回B地所用的时间最少,丙应当先追甲再返回追乙,还是先追乙再返回追甲?

  我的思考如下:

  如果先追乙返回,时间是1÷(3-1)×2=1小时,再追甲后返回,时间是3÷(3-1)×2=3小时,共用去3+1=4小时

  如果先追甲返回,时间是2÷(3-1)×2=2小时,再追乙后返回,时间是3÷(3-1)×2=3小时,共用去2+3=5小时

  所以先追乙时间最少。故先追更后出发的。

  小升初数学:应用题综合训练 2

  1.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

  总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵

  需要种的天数是2150÷86=25天

  甲25天完成24×25=600棵

  那么乙就要完成900-600=300棵之后,才去帮丙

  即做了300÷30=10天之后即第11天从A地转到B地。

  2.有三块草地,面积分别是5,15,24亩。草地上的草一样厚,而且长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

  这是一道牛吃草问题,是比较复杂的牛吃草问题。

  把每头牛每天吃的草看作1份。

  因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份

  所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份

  因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份

  所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份

  所以45-30=15天,每亩面积长84-60=24份

  所以,每亩面积每天长24÷15=1.6份

  所以,每亩原有草量60-30×1.6=12份

  第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份

  新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛

  所以,一共需要38.4+3.6=42头牛来吃。

  两种解法:

  解法一:

  设每头牛每天的吃草量为1,则每亩30天的总草量为:10x30/5=60;每亩45天的总草量为:28x45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6x30=12,那么24亩原有草量为12x24=288,24亩80天新长草量为24x1.6x80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)

  解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28x45-30x30)/(45-30)=24;15亩原有草量:1260-24x45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)x(24/15)=42头

  3.某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

  甲乙合作一天完成1÷2.4=5/12,支付1800÷2.4=750元

  乙丙合作一天完成1÷(3+3/4)=4/15,支付1500×4/15=400元

  甲丙合作一天完成1÷(2+6/7)=7/20,支付1600×7/20=560元

  三人合作一天完成(5/12+4/15+7/20)÷2=31/60,三人合作一天支付(750+400+560)÷2=855元

  甲单独做每天完成31/60-4/15=1/4,支付855-400=455元

  乙单独做每天完成31/60-7/20=1/6,支付855-560=295元

  丙单独做每天完成31/60-5/12=1/10,支付855-750=105元

  所以通过比较

  选择乙来做,在1÷1/6=6天完工,且只用295×6=1770元

  4.一个圆柱形容器内放有一个长方形铁块。现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面。再过18分钟水已灌满容器。已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。

  把这个容器分成上下两部分,根据时间关系可以发现,上面部分水的体积是下面部分的18÷3=6倍

  上面部分和下面部分的高度之比是(50-20):20=3:2

  所以上面部分的底面积是下面部分装水的底面积的6÷3×2=4倍

  所以长方体的底面积和容器底面积之比是(4-1):4=3:4

  独特解法:

  (50-20):20=3:2,当没有长方体时灌满20厘米就需要时间18x2/3=12(分),所以,长方体的体积就是12-3=9(分钟)的水量,因为高度相同,所以体积比就等于底面积之比,9:12=3:4

  5.甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?

  把甲的套数看作5份,乙的套数就是6份。

  甲获得的利润是80%×5=4份,乙获得的利润是50%×6=3份

  甲比乙多4-3=1份,这1份就是10套。

  所以,甲原来购进了10×5=50套。

  6.有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5。经过2+1/3小时,A,B两池中注入的水之和恰好是一池。这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?

  把一池水看作单位“1”。

  由于经过7/3小时共注了一池水,所以甲管注了7/12,乙管注了5/12。

  甲管的注水速度是7/12÷7/3=1/4,乙管的注水速度是1/4×5/7=5/28。

  甲管后来的注水速度是1/4×(1+25%)=5/16

  用去的时间是5/12÷5/16=4/3小时

  乙管注满水池需要1÷5/28=5.6小时

  还需要注水5.6-7/3-4/3=29/15小时

  即1小时56分钟

  继续再做一种方法:

  按照原来的注水速度,甲管注满水池的时间是7/3÷7/12=4小时

  乙管注满水池的时间是7/3÷5/12=5.6小时

  时间相差5.6-4=1.6小时

  后来甲管速度提高,时间就更少了,相差的时间就更多了。

  甲速度提高后,还要7/3×5/7=5/3小时

  缩短的时间相当于1-1÷(1+25%)=1/5

  所以时间缩短了5/3×1/5=1/3

  所以,乙管还要1.6+1/3=29/15小时

  再做一种方法:

  ①求甲管余下的部分还要用的时间。

  7/3×5/7÷(1+25%)=4/3小时

  ②求乙管余下部分还要用的时间。

  7/3×7/5=49/15小时

  ③求甲管注满后,乙管还要的时间。

  49/15-4/3=29/15小时

  7.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。小明从家到学校全部步行需要多少时间?

  爸爸骑车和小明步行的速度比是(1-3/10):(1/2-3/10)=7:2

  骑车和步行的时间比就是2:7,所以小明步行3/10需要5÷(7-2)×7=7分钟

  所以,小明步行完全程需要7÷3/10=70/3分钟。

  8.甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。乙车的速度是甲车速度的80%。已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地。最后乙车比甲车迟4分钟到C地。那么乙车出发后几分钟时,甲车就超过乙车。

  乙车比甲车多行11-7+4=8分钟。

  说明乙车行完全程需要8÷(1-80%)=40分钟,甲车行完全程需要40×80%=32分钟

  当乙车行到B地并停留完毕需要40÷2+7=27分钟。

  甲车在乙车出发后32÷2+11=27分钟到达B地。

  即在B地甲车追上乙车。

  9.甲、乙两辆清洁车执行东、西城间的公路清扫任务。甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

  甲车和乙车的速度比是15:10=3:2

  相遇时甲车和乙车的路程比也是3:2

  所以,两城相距12÷(3-2)×(3+2)=60千米

  10.今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个。那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?

  我的解法如下:(共12辆车)

  本题的关键是集装箱不能像其他东西那样,把它给拆散来装。因此要考虑分配的问题。

  11.师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?

  给徒弟加工的零件数加上10x4=40个以后,师傅加工零件个数的1/3就正好等于徒弟加工零件个数的1/4。这样,零件总数就是3+4=7份,师傅加工了3份,徒弟加工了4份。

  12.一辆大轿车与一辆小轿车都从甲地驶往乙地。大轿车的速度是小轿车速度的80%。已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地。又知大轿车是上午10时从甲地出发的。那么小轿车是在上午什么时候追上大轿车的。

  这个题目和第8题比较近似。但比第8题复杂些!

  大轿车行完全程比小轿车多17-5+4=16分钟

  所以大轿车行完全程需要的时间是16÷(1-80%)=80分钟

  小轿车行完全程需要80×80%=64分钟

  由于大轿车在中点休息了,所以我们要讨论在中点是否能追上。

  大轿车出发后80÷2=40分钟到达中点,出发后40+5=45分钟离开

  小轿车在大轿车出发17分钟后,才出发,行到中点,大轿车已经行了17+64÷2=49分钟了。

  说明小轿车到达中点的时候,大轿车已经又出发了。那么就是在后面一半的路追上的。

  既然后来两人都没有休息,小轿车又比大轿车早到4分钟。

  那么追上的时间是小轿车到达之前4÷(1-80%)×80%=16分钟

  所以,是在大轿车出发后17+64-16=65分钟追上。

  所以此时的时刻是11时05分。

  13.一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成。如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时......。两人如此交替工作。那么打完这部书稿时,甲乙两人共用多少小时?

  甲每小时完成1/14,乙每小时完成1/20,两人的工效和为:1/14+1/20=17/140;

  因为1/(17/140)=8(小时)......1/35,即两人各打8小时之后,还剩下1/35,这部分工作由甲来完成,还需要:

  (1/35)/(1/14)=2/5小时=0.4小时。

  所以,打完这部书稿时,两人共用:8*2+0.4=16.4小时。

  14.黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?

  黄气球数量:(32+4)/2=18个,花气球数量:(32-4)/2=14个;

  黄气球总价:(18/3)*2=12元,花气球总价:(14/2)*3=21元。

  15.一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?

  船的顺水速度:60+20=80米/分,船的逆水速度:60-20=40米/分。

  因为船的.顺水速度与逆水速度的比为2:1,所以顺流与逆流的时间比为1:2。

  这条船从上游港口到下游某地的时间为:

  3小时30分*1/(1+2)=1小时10分=7/6小时。(7/6小时=70分)

  从上游港口到下游某地的路程为:

  80*7/6=280/3千米。(80×70=5600)

  16.甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?

  由于两个粮仓容量之和是相同的,总共的面粉43+37=80吨也没有发生变化。

  所以,乙粮仓差1-1/2=1/2没有装满,甲粮仓差1-1/3=2/3没有装满。

  说明乙粮仓的1/2和甲粮仓的2/3的容量是相同的。

  所以,乙仓库的容量是甲仓库的2/3÷1/2=4/3

  所以,甲仓库的容量是80÷(1+4/3÷2)=48吨

  乙仓库的容量是48×4/3=64吨

  17.甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478。那么甲、乙丙三数之和是几?

  根据题意得:

  甲数=乙数×商+2;乙数=丙数×商+2

  甲、乙、丙三个数都是整数,还有丙数大于2。

  商是大于0的整数,如果商是0,那么甲数和乙数都是2,就不符合要求。

  所以,必然存在,甲数>乙数>丙数,由于丙数>2,所以乙数大于商的2倍。

  因为甲数+乙数=乙数×(商+1)+2=478

  因为476=1×476=2×238=4×119=7×68=14×34=17×28,所以“商+1”<17

  当商=1时,甲数是240,乙数是238,丙数是236,和就是714

  当商=3时,甲数是359,乙数是119,丙数是39,和就是517

  当商=6时,甲数是410,乙数是68,丙数是11,和就是489

  当商=13时,甲数是444,乙数是34,丙数是32/11,不符合要求

  当商=16时,甲数是450,乙数是28,丙数是26/16,不符合要求

  所以,符合要求的结果是。714、517、489三组。

  18.一辆车从甲地开往乙地。如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达。甲、乙两地之间的距离是多少千米?

  这个问题很难理解,仔细看看哦。

  原定时间是1÷10%×(1-10%)=9小时

  如果速度提高20%行完全程,时间就会提前9-9÷(1+20%)=3/2

  因为只比原定时间早1小时,所以,提高速度的路程是1÷3/2=2/3

  所以甲乙两第之间的距离是180÷(1-2/3)=540千米

  山岫老师的解答如下:

  第18题我是这样想的:原速度:减速度=10:9,所以减时间:原时间=10:9,所以减时间为:1/(1-9/10)=10小时;原时间为9小时;

  原速度:加速度=5:6,原时间:加时间=6:5,行驶完180千米后,原时间=1/(1/6)=6小时,所以形式180千米的时间为9-6=3小时,原速度为180/3=60千米/时,所以两地之间的距离为60x9=540千米

  19.某校参加军训队列表演比赛,组织一个方阵队伍。如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加。那么组成这个方阵的人数应为几人?

  利用平方数解答题目:

  根据题意,方阵人数要满足60×3<方阵人数≤60×4,并且满足70×2<方阵人数≤70×3

  说明总人数在60×3=180和70×3=210之间

  这之间的平方数只有14×14=196人。

  所以组成这个方阵的人数应为196人。

  20.甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的。这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?

  我用份数来解答:

  甲车床加工方形零件4份,圆形零件4×2=8份

  乙车床加工方形零件3份,圆形零件3×3=9份

  丙车床加工方形零件3份,圆形零件3×4=12份

  圆形零件共8+9+12=29份,每份是58÷29=2份

  方形零件有2×(3+3+4)=20个

  所以,共加工零件20+58=78个

  (170+10x4)/7=30个

  30x4-40=80个

  或者:

  把师傅加工的零件数减去10x3=30个,师傅的1/3就正好等于徒弟的1/4。

  (170-10x3)/(3+4)x4=80个

  小升初数学:应用题综合训练 3

  小升初数学应用题复习综合训练(十六)

  1.甲、乙两个书架,共有书3000册,甲的册数的2/5比乙的册数的1/4多420本,求两个书架各有书多少册?

  解:如果给乙的1/4加上420册,即给乙加上420x4=1680册,乙的1/4就与甲的2/5同样多。这时,甲、乙的册数比为1/4:2/5=5:8。

  所以,甲书架有书:(3000+1680)x5/(5+8)=1800册;乙书架有书:3000-1800=1200册。

  2.姐弟两人打印一批稿件,姐姐单独打印需要的时间是弟弟所需时间的3/8,姐姐先打印了这批稿件的2/5后,接着由弟弟单独打印,用24小时打印完,问姐姐打印了多少小时?

  解法一:

  另外的1-2/5=3/5如果弟弟做,需要的时间就相当于姐姐的3/5÷3/8=8/5, 所以姐姐单独打印完需要24÷(2/5+8/5)=12小时,所以姐姐打了12×2/5=

  4.8小时。

  解法二:

  姐姐单独打印需要的时间是弟弟所需时间的3/8,姐姐先打印了这批稿件的2/5需要的时间相当于弟弟完成同样任务所需总时间的2/5×3/8=3/20,接着由弟弟单独打印,需时为总时间的3/5,两比为1/4,共计用24小时。

  弟弟打剩下的3/5用时24×4/(1+4)=96/5小时,完成全部任务用96÷5÷3/5=32小时。姐姐单独打完用时是32×3/8=12小时。所以姐姐用了12×2/5=4.8小时。

  3.有甲、乙两个水管向水池注水,先开甲管,开放时间是单开乙管注满水池所需时间的1/3.然后开放乙管,开放的时间是单开甲管注满水池所需时间的1/3.这样注满水池的13/18.如果甲、乙两管同时开放,注满水池需3+3/5小时,那么单开甲管或单开乙管注满水池,各需要多少小时?

  小升初数学应用题综合训练系列(十九)-北师大版││小学-旗下的小学(),为您免费提供小学语数英等各学科的海量教学资源:试题、试卷、教案、课件、动画课件、素材、作文、教学音视频和拓展资料等。充分满足您免费下载和上传各类资料的需求。

  解:用初中的方法解答一下。设甲管开放时间是x小时,乙管开放时间是y小时。 有x/y×1/3+y/x×1/3=13/18,解得y/x=2/3

  因为1/y+1/x=5/18,所以,x=9,y=6

  4.A,B两地相距105千米,甲、乙两人骑自行车分别从两地同时相向而行,出发后经1+3/4小时相遇,接着两人继续前进,在他们相遇3分钟后,一直以每小时40千米速度行驶的`甲在途中与迎面而来的丙相遇,丙在与甲相遇后继续前进,在C地赶上乙.如果开始时甲的速度比原速每小时慢20千米,而乙的速度比原速每小时快2千米.那么甲乙就会在C地相遇.求丙的骑车速度?

  解:甲乙的速度和每小时105÷7/4=60千米。

  乙的速度是每小时行60-40=20千米。

  后来甲的速度是每小时40-20=20千米,乙的速度是每小时20+2=22千米。

  C地在距离A地的105÷(20+22)×20=50千米。

  原来相遇的地点距离A地105÷60×40=70千米。

  3分钟后甲乙相距60×3/60=3千米。

  乙行了20×3/60=1千米,距离C地70-50+1=19千米。

  甲行了40×3/60=2千米,丙距离C地70-50+2=22千米。

  乙丙的速度比是19:22,所以丙的速度是每小时20÷19×22=440/19千米。

  5.一件工作由A,B两道工序,上午在A工序上工作的人数是在B工序上工作人数的1/6.为提高工作效率,下午从B工序上调1人到A工序上,这时A工序上的人数是B工序上人数的1/5,A,B两个工序上共有多少人在工作?

  解:上午在A工序的人数是总人数的1÷(1+6)=1/7

  小升初数学应用题综合训练系列(十九)

  下午在A工序上的人数是总人数的1÷(1+5)=1/6

  所以共有1÷(1/6-1/7)=42人。

  6.一座下底面是边长为10米的正方形石台,它的一个顶点A有一个虫子巢穴,虫甲每分钟爬6厘米,虫乙每分钟爬10厘米,甲沿正方形的边由A-B-C-D-A不停地爬行,甲先爬2厘米后,乙沿甲爬行过的路线追赶甲,当乙遇到甲后,乙就立即沿原路返回巢穴,然后乙再沿甲爬行的路线追赶甲,.......在甲爬行的一圈内,乙最后一次追上甲时,乙爬行了多长时间?

  解:谈谈我对这个题目的详细解答,与大家共享。

  10米的正方形的周长是10×4×100=4000厘米。

  每分钟乙虫比甲虫多行10-6=4厘米。

  每次乙从起点出发追及,乙行的路程不能超过4000厘米。

  所以每次追及的时间不能超过4000÷10=400分钟。

  所以相差的距离不能超过400×4=1600厘米。

  设每一次追的距离为1份,那么下一次追及的距离是1+6×[1÷(10-6)]×2=4份。

  每次从起点出发追及的距离依次是2、8、32、128、512、20xx、……

  因此,最后一次追及相差的距离是512厘米。

  当乙追上甲时,甲共行了512÷4×10=1280厘米。

  所以,从乙出发到最后一次追上甲,甲共行了1280-2=1278厘米。

  甲行这段路程的时间就是乙爬行的所有时间。

  所以是1278÷6=213分钟。

  小升初数学:应用题综合训练 4

  7.有一群猴子,分一堆桃子,第一只猴子分了4个桃子和剩下桃子的1/10,第二只猴子分了8个桃子和这时剩下桃子的1 /10,第三只猴子分了12个桃子和这时剩下桃子的1/10........依次类推.最后发现这堆桃子正好分完,且每只猴子分得的桃子同样多.那么这群猴子有多少只?

  方程解法:设总的桃子个数是10a+4个,那么第一只猴子分得a+4个桃子 剩下9a,假设9a=10b+8个,那么第二只猴子分得b+8个桃子。

  所以a+4=b+8,即b=a-4个。那么就有9a=10(a-4)+8。

  解得a=32。所以桃子有32×10+4=324个。

  每只猴子分得32+4=36个,所以猴子有324÷36=9只。

  明月清风老师的解法。

  第一只猴子分得的那1/10比第二只猴子的那1/10多8-4=4个

  第一只猴子分得的那1/10对应的单位1比第二只猴子分得的1/10对应的单位1多4÷1/10=40个。

  那么第一只猴子分得的那1/10是40-8=32个。

  所以桃子总数是32×10+4=324个。

  每只猴子吃32+4=36个,那么有324÷36=9只猴子。

  8.有甲、乙两项工作,张师傅单独完成甲工作要9天,单独完成乙工作要12天.王师傅单独完成甲工作要3天,单独完成乙工作要15天.如果两人合作完成这两项工作,最少需要多少天?

  解:分配任务,王师傅完成甲工作的时间少,先做3天甲工作,就完成了。 张师傅完成乙工作的时间少,先做3天乙工作,剩下1-3/12=3/4。

  还需要3/4÷(1/12+1/15)=5天。所以共有3+5=8天。

  小升初数学应用题综合训练系列(十九)-北师大版││小学-旗下的小学(),为您免费提供小学语数英等各学科的.海量教学资源:试题、试卷、教案、课件、动画课件、素材、作文、教学音视频和拓展资料等。充分满足您免费下载和上传各类资料的需求。

  9.某服装厂生产一种服装,每件的成本是144元,售价是200元.一位服装经销商订购了120件这种服装,并提出:如果每件的销售每降低2元,我就多订购6件.按经销商的要求,这个服装厂售出多少件时可以获得最大的利润,这个最大利润是多少元?

  解:原来的利润是200-144=56元。

  由于56是2的倍数,所以把56看作56÷2=28份,由于120是6的倍数,所以120看作120÷6=20份。

  所以(20+28)÷2=24份的时候利润最大。

  即最大利润是24×2×24×6=6912元。售出的件数是24×6=144件。

  10.甲、乙两车从A,B两站同时相向而行,已知甲车的速度是乙车的1.4倍,当甲车到达途中C站时,乙车还要再行4小时48分才能到达C站,那么甲车到达C站后还要再行多少小时与乙车相遇?

  解:相距的路程是乙行4+48/60=4.8小时的路程。

  所以,相遇时间是4.8÷(1+1.4)=2小时。

  小升初数学:应用题综合训练 5

  221. 瓶中装有浓度为15%的酒精溶液1000克.现在又分别倒入100克和400克的A,B两种酒精溶液,瓶里的浓度变成了14%.已知A种酒精溶液是B种酒精溶液浓度的2倍.那么A种酒精溶液的浓度是多少?

  三种混合后溶液重1000+100+400=1500克,含酒精14%×1500=210克,原来含酒精15%×1000=150克,说明AB两种溶液共含酒精210-150=60克。

  由于A的浓度是B的2倍,因此400克B溶液的酒精含量相当于400÷2=200克A溶液酒精的含量。所以A溶液的浓度是60÷(100+200)=20%。

  222. 某商店分别花同样多的钱,购进甲、乙、丙三种不同的糖果.已知甲、乙、丙三种糖果每千克的价格分别是9.60元、16元、18元.如果把这三种糖果混合成什锦糖,按20%的利润来定价,那么这种什锦糖每千克定价是多少元?

  3÷(1/9.6+1/16+1/18)×(1+20%)=16.2元

  223. 甲地到乙地都是坡路,有上坡也有下坡.某人骑自行车往返甲、乙两地共用4.5小时,若已知此人上坡时速度为12千米/小时,下坡速度为18千米/小时,那么甲、乙两地全长多少?

  去是上坡返回就是下破,因此往返36千米共需要36÷12+36÷18=5小时,所以1小时可以往返36÷5=7.2千米。4.5小时可以往返7.2×4.5=32.4千米。

  224. 一项工程,甲一人需1小时36分完成,甲、乙二人合作要1小时完成.现在由甲一人完成1/12以后,甲、乙二人一起干,但因途中甲休息,全部工作用了1小时38分完成,那么由乙单独做那部分占全部工程的几分之几?

  解:乙1小时做的相当于甲36分钟做的,乙和甲的工效比是36:60=3:5。

  甲做1/12用了1/12×96=8分钟。

  后来用了98-8=90分钟,如果合做90分钟就要完成90÷60=3/2,实际少完成了3/2-(1-1/12)=7/12,说明甲休息这段时间可以做7/12。

  这段时间就是乙单独做的,能完成7/12×3/5=7/20。

  225. 设A,B,C三人沿同一方向,以一定的速度绕校园一周的时间分别是6、7、11分.由开始点A出发后,B比A晚1分钟出发,C比B晚5分钟出发,那么A,B,C第一次同时通过开始出发的地点是在A出发后几分钟?

  从条件可以知道,C出发时,A刚好行了5+1=6分钟,即一圈,也就是说,A和C再次同时经过出发点时,是6×11=66的倍数分钟后。

  由于B还需要7-5=2分钟才能通过,说明要满足66的倍数除以7余2分钟。当66×3=198分钟时,198÷7=28……2分钟,满足条件。

  因此ABC第一次同时通过出发地点是A出发后6+198=204分钟的'时候。

  226. 某班同学分成若干组去植树,若每组植树N棵,且N为质数,则剩下树苗20棵,若每组植树9棵,则还缺少2棵,这个班的同学共分成几组?

  解:可以看出N是小于9的质数,相差20+2=22。

  说明组数是22的约数,9-N也是22的约数。

  9-N小于11,所以9-N=2。

  所以组数就是22÷2=11组。

  227. 学校举行计算机汉字输入技能竞赛,原计划评选出一等奖15人,二等奖20人,现将一等奖中的后5人调整为二等奖,这样一等奖获得者的平均速度提高了8字/分,二等奖获得者平均速度提高了6字/分,那么原来一等奖平均速度比二等奖平均速度多多少?

  原来一等奖的平均分比这5人的平均分高8×(15-5)÷5=16字

  原来二等奖的平均分比这5人的平均分低6×(20+5)÷5=30字

  那么原来一等奖的平均分比二等奖高16+30=46字

  228. 红光农场原定9时来车接601班同学去劳动,为了争取时间,8时同学们就从学校步行向农场出发,在途中遇到准时来接他们的汽车,于是乘车去农场,这样比原定时间早到12分钟.汽车每小时行48千米,同学们步行的速度是每小时几千米?

  学生步行的路程,汽车需要12÷2=6分钟,说明是在9:00前6分钟接到学生,即8:54分,说明学生行了54分钟。所以汽车的速度是步行的54÷6=9倍,因此步行的速度是每小时行48÷9=16/3千米。

  229. 甲、乙两地公路长74千米,8:15一辆汽车从甲地到乙地,半个小时后,又有一辆同样速度的汽车从甲地开往乙地.王叔叔8:25从乙地骑摩托车出发去甲地,在差5分不到9点时,他遇到了第一辆汽车,9:16遇到第二辆汽车,王叔叔骑摩托车的速度是多少?

  根据题意,汽车40分和摩托车30分共行74千米,汽车31分和摩托车51分共行74千米。

  可以知道汽车40-31=9分钟相当于摩托车51-30=21分钟行的。

  可以得到摩托车行完需要40÷9×21+30=370/3分钟。

  所以摩托车小时行74÷370/3×60=36千米

  230. 在底面边长为60厘米的正方形的一个长方体的容器里,直立着一个长1米,底面为正方形,边长15厘米的四棱柱铁棍.这时容器里的水半米深.现在把铁棍轻轻地向正上方提起24厘米,露出水面的四棱柱切棍浸湿部分长多少厘米?

  减少24厘米的铁棍的体积,水面就要下降24×15×15÷(60×60)=1.5厘米。所以露在水面的有1.5+24=25.5厘米。

  小升初数学:应用题综合训练 6

  1. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?

  因为33÷8=4...1,33÷5=6...3,即都有余数,所以,既不可能两户都达到或超过50度用电量,也不可能两户都未达到50度用电量,因此只有一种情况:

  2. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?

  效率比原来降低1/5,即变为原来的4/5,那么所用时间就是原来的5/4,比原来多用:

  5/4-1=1/4

  所以,推迟的20分钟就是原来完成160个零件所用时间的1/4。原来完成160个零件需要:

  20/(1/4)=80分钟

  这批零件共有:160/(80/120)=240个。

  160个的时间比是4:5,相差1份,是20分钟

  4份是80分钟

  160个前做了120-80=40分,80分160个,40分160/2=80

  160+80=240

  我也来做一种方法:

  推迟的20分钟,即1/3小时相当于后来用时的1/5,所以,后来用时1/3÷1/5=5/3小时

  原来的工效做160个零件就用了5/3-1/3=4/3小时。

  所以,每小时可以完成160÷4/3=120个

  2小时完成任务,这批零件就有120×2=240个

  33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张0.50元,丙种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?

  买甲比买丙多8+6=14张,而丙每张比甲贵0.70元,多买14张甲一共0.50x14=7元,所以可以支付丙7/0.70=10张,钱数一共是1.20x0=12元,可以买乙10+6=16张,所以乙的价钱是12/16=0.75元。

  34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?

  我的思路是这样的。

  三个儿子共拿出1200×3=3600元,这3600元刚好就是两个儿子应该分得的钱。

  每个儿子应该分得3600÷2=1800元。

  三间房子共值1800×5=9000元,那么每间房子值9000÷3=3000元。

  再做一种思路:

  每人应该分得3÷5=3/5间房子,那么分得房子的就多分了1-3/5=2/5间

  也就是说2/5间房子值1200元,所以每间房子值1200÷2/5=3000元

  继续分享算法:

  如果还有5-3=2间房子,每人都分得房子,那么就要拿出1200×5=6000元

  所以,每间房子值6000÷2=3000元。

  35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?

  我的思考如下:

  小燕两次相差2A,且两次相差总画册的1/3-1/4=1/12

  当A=1时,两人的总和是2÷1/12=24本,少于38本

  当A=2时,两人的总和是4÷1/12=48本,多于38本

  所以,A=1

  第一次交换,小燕有24×1/3=8本,原来小燕有8-1=7本

  小明有24-7=17本

  36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?

  先理清思路:根据题意可以得出下面的关系。

  37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的.2倍时,爸爸是34岁.现在三人的年龄各是多少岁?

  充分利用年龄差来解答问题。

  妹妹:9岁, 哥哥:兄妹差+9 ,爸爸:(兄妹差+9)×3

  妹妹:兄妹差, 哥哥:兄妹差×2,爸爸:34岁

  因为爸爸和哥哥的年龄差也将恒定不变。

  所以,(兄妹差+9)×2=34-兄妹差×2

  所以,兄妹差是(34-2×9)÷4=4岁

  即当妹妹9岁时,哥哥4+9=13岁,爸爸13×3=39岁

  三人年龄和是9+13+39=61岁

  所以,再过(64-61)÷3=1年,年龄和就是64岁了。

  所以,现在妹妹9+1=10岁,哥哥13+1=14岁,爸爸39+1=40岁

  38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?

  我选择让丙先去追后出发的乙,10÷(3-1)=5分钟追上,拿到信后去追甲,甲乙相距甲行10+10+10+5+5=40分钟的路程,丙用40÷(3-1)=20分钟追上甲

  交换信后返回追乙,这时乙丙相距乙行40+20×2=80分钟的路程,丙用80÷(3-1)=40分钟追上乙,把信交给乙。

  所以,共用了5+20+40=65分钟。

  乙共行了65+10=75分钟,丙回到B地还要75÷3=25分钟。

  所以共用去65+25=90分钟

  又想到一个思路,追上并返回。

  追上乙并返回,需要10÷(3-1)×2=10分钟

  追上甲并返回,需要10×3÷(3-1)×2=30分钟

  再追上乙并返回,需要(10×2+30)÷(3-1)×2=50分钟

  共用10+30+50=90分钟

  39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?

  假设全是甲车间的工人,共生产:94x15=1410把;

  40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?

  如果甲的速度和乙相同,那么甲的路程应该是乙的10/14=5/7,比乙少2/7;

  而实际甲是乙的6/7,比乙少1/7,是因为甲每分钟比乙多走12米、10分钟共多走12x10=120米。

  所以,这120米就是乙路程的2/7-1/7=1/7;

  乙回家的路程为:120/(1/7)=840米。

  我也做两种基本的方法

  方法一:

  乙行甲那么远的路,就要14÷(1+1/6)=12分钟

  所以甲回家有12÷(1/10-1/12)=720米

  所以乙回家的路程是720×(1+1/6)=840米

  方法二:

  甲行乙那么所需要的时间是10×(1+1/6)=35/3分钟

  所以乙回家的路程是12÷(3/35-1/14)=840米

  比实际少生产:1998-1410=588把;

  一个甲车间工人换成乙车间的,多生产:43-15=28把;

  乙车间共有工人:588/28=21人;

  甲车间每天比乙车间多生产:1998-21x43x2=192把。

  红球×1/3+黄球×1/4+白球×1/5=160-120=40………………①

  红球×1/5+黄球×1/4+白球×1/3=160-116=44………………②

  红球+黄球+白球=160………………………………………………③

  利用初中的代数消元法思想来解答。

  如果按照第一种方案,取160÷40=4次刚好取完,红球还差4/3-1=1/3,白球就多出1-4/5=1/5,黄球取完了,说明红球的1/3和白球的1/5相等,红球和白球的个数比是3:5

  按照两种方案的比较发现,白球的1/3-1/5=2/15比红球的2/15多4个

  即白球比红球多4÷2/15=30个

  所以红球有30÷(5-3)×3=45个,白球有45+30=75个

  黄球就是160-45-75=40个

  甲超过了50度,乙未达到 50度。

  因为33=5x5+8,可以得出:

  甲用电:50+1=51度,乙用电:50-5=45度。

  如果都超过50度,那么相差就应该是8的倍数,显然33不是8的倍数;

  如果都没有超过50度,那么相差就应该是5的倍数,同样33也不是5的倍数。

  因此,甲50度以上,乙50度以下。

  33-8×n的得数是5的倍数(从个位数字可以得出)只有33-8×1=25=5×5符合要求。

  所以甲50+1=51度,乙50-5=45度

  小升初数学:应用题综合训练 7

  1. 一个四位数除以119余96,除以120余80.求这四位数.

  解:用盈亏问题的思想来解答。

  商是(96-80)÷(120-119)=16,所以被除数是120×16+80=20xx。

  2. 有四个不同的自然数,其中任意两个数之和是2的倍数,任意三个数的'和是3的倍数,求满足条件的最小的四个自然数.

  解:任意两个数之和是2的倍数,说明这些数全部是偶数或者全部是奇数。 任意三个数的和是3的倍数,说明这些数除以3的余数相同。

  要满足条件的最小自然数,因为0是自然数了。所以我认为结果是0、6、12、18。

  3. 在一环形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到达B点,又过8分钟两人再次相遇.甲、乙环行一周各需要多少分钟?

  解:甲乙合行一圈需要8+4=12分钟。乙行6分钟的路程,甲只需4分钟。 所以乙行的12分钟,甲需要12÷6×4=8分钟,所以甲行一圈需要8+12=20分钟。乙行一圈需要20÷4×6=30分钟。

  4. 甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍.已知甲上午8点经过邮局,乙上午10点经过邮局,问甲、乙在中途何时相遇?

  解:我们把乙行1小时的路程看作1份,那么上午8时,甲乙相距10-8=2份。

  所以相遇时,乙行了2÷(1+1.5)=0.8份,0.8×60=48分钟,所以在8点48分相遇。

  小升初数学:应用题综合训练 8

  1、甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.

  解:第一次相遇时,两人合行了一个全程,其中乙行了全程的2÷(2+3)=2/5

  第二次相遇时,两人合行了3个全程,其中乙行了全程的2/5×3=6/5

  两次相遇点之间的距离占全程的2-6/5-2/5=2/5

  所以全程是3000÷2/5=7500米。

  解乙的速度是甲的2/3即甲速:乙速=3:2所以第一次相遇时甲走了全程的3/5,乙走了全程的2/5

  第二次相遇的地点距第一次相遇甲共走了2倍全程的3/5=6/5,乙走了2倍全程的2/5=4/56/5-4/5=2/5,即相差全程的2/5A、B两地的距离=3000/(2/5)=7500米

  综合:3000/[2x3/(2+3)-2x2/(3+2)]=50(千米)

  76.一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?

  C顺水速度是逆水速度的2倍,那么逆水速度就是水流速度的2倍,静水速度就是水流速度的3倍,所以水流速度是9÷3=3千米/小时

  下雨时,水流速度是3×2=6千米/小时,逆行速度是9-6=3千米/小时

  顺行速度是9+6=15千米/小时

  所以往返时,逆行时间和顺行时间比是5:1

  所以顺行时间是10÷(5+1)=5/3小时

  所以甲乙两港相距5/3×15=25千米

  解:无论水速多少,逆水与顺水速度和均为9x2=18

  故:

  水速FlowSpeed=18/3/2=3;

  船速ShipSpeed=FlowSpeed+18/3=9;

  whenrains,Flowspeed=6;

  顺水s1=9+6=15;

  逆水s2=9-6=3;

  顺水单程时间10x(3/(15+3))=5/3;

  so,相距5/3x15=25km

  2.某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?

  解:假设每组三人,其中3×1/3=1人被录取。每组总得分80×3=240分。录取者比没有被录取者多6+15=21分。所以,没有被录取的分数是(240-21)÷3=73分所以,录取分数线是73+15=88分

  解:因为没录取的学生数是录取的学生数的:

  (1-1/3)/1/3=2倍,二者的平均分之间相差:15+6=21分的距离,所以,在均衡分数时,没录取的学生平均分每提高一分,录取的学生的平均分就要降低2分,这样二者的分差就减少了3分,21/3=7,即要进行7次这样的'均衡才能达到平均分80分,在这个均衡过程中,录取的学生的平均分降低了:2x7=14分,所以,录取分数线是:80+14-6=88分,3.一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?

  解:如果每人搬7块,就会余下30×(8-7)+20=50块

  所以搬5块的人有(148-50)÷(7-5)=49人

  所以学生共有12+49=61人,砖有61×7+50=477块。

  解:12人每人各搬7块,当他们搬8块的时候,多搬了12块

  18人每人各搬5块,当他们搬动8块的时候,多搬了18x3=54块

  所以30人多搬了54+12=66块其余人搬动了148-20-66=62块

  而这些其它人每人多搬动了2块,所以其他人的人数为62/2=31

  所以,一共有学生61人

  砖块的数量:12x7+49x5+148=477

  解:把30人分成12人和18人两部分,12人每人各搬7块,若他们搬8块,则多搬了12x1=12块,18人每人各搬5块,若他们搬8块,则多搬了18x3=54块,所以30人多搬了54+12=66块其余人搬动了148-20-66=62块,而这些其它人每人多搬动了7-5=2块,所以其他人的人数为62÷2=31所以,一共有学生61人砖块的数量:12x7+49x5+148=477块

  小升初数学:应用题综合训练 9

  1. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?

  解:根据新课标教材,0是最小的自然数。

  由于去掉最小数后,算术平均数是11,所以,这些数最多有10÷(11-10)+1=11个。

  所以,最大的数最大值是11-1+10=20

  2. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?

  解:

  方法一

  如果这23个男生都是少先队员,那么女生少先队员就有35-23=12人,男生非少先队员就没有了,所以就多12人。

  方法二

  如果这23个男生都不是少先队员,那么女生少先队员就有35人,那么女生少先队员就比男生非少先队员多35-23=12人。

  方法三

  女生少先队员-男生非少先队员

  =(女生少先队员+男生少先队员)-(男生非少先队员+男生少先队员)

  =少先队员-男生

  =35-23

  =12人。

  3. 小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?

  解:

  说明坐汽车比步行少用3+5=8小时,这8小时内,步行要行8×8=64千米。

  坐汽车每小时要比步行多行40-8=32千米。

  坐汽车64÷32=2小时,就可以多行这么多了。

  所以,从出发点到周口店有40×2=80千米。

  又想到一个解法:

  汽车速度是步行速度的40÷8=5倍

  那么汽车行完全程的时间是(3+5)÷(5-1)=2小时

  所以从出发点到周口店有40×2=80千米

  所以从出发点到周口店有40×2=80千米

  40/8=5 (5+3)x40=320 320/(5-1)=80

  4. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.

  两船速度和:90÷3=30(千米)

  两船速度差:90÷15=6(千米)

  乙船的速度:(30-6)÷2=12(千米/小时)

  甲船的速度:12+6==18(千米/小时)

  答:甲船的速度是18千米/小时,乙船的速度是12千米/小时.

  5. 二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?

  解:一班人数:(5/6x90-71)/(5/6-75%)=48(人)

  一班少先队员人数比二班少先队员多的人数:75%x48-5/6x(90-48)=1(人)

  解:

  假设两个班的少先队员都占本班人数的5/6,那么少先队员人数就占两班总人数的5/6,即90×5/6=75人。

  比实际多了75-71=4人。

  所以一班有少先队员4÷(5/6-75%)=48人,二班有90-48=42人。

  那么一班比二班多48×75%-42×5/6=1人

  6. 一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.

  解:

  第一次溢出的水是小球的体积,假设为1

  第二次溢出的水是中球的体积-小球的体积

  第三次溢出的水是大球的体积+小球的体积-中球的体积

  第一次是第二次的1/2,所以中球的体积为1+2=3

  第三次是第二次的1.5倍,第二次是2;所以大球的体积为3-1+3=5

  V小球:V中球:V大球=1:3:5

  7. 某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的'速度是4500米/小时.问翻越这座山要走多少米?

  解:

  往返共用去2+2.5=4.5小时。

  所有上坡用的时间和所有下坡用的时间比是4500:3000=3:2。

  所有上坡用的时间是4.5÷(3+2)×3=2.7小时,所以翻越这座山要走的路程就相当于所有的山坡路,即3000×2.7=8100米

  解:上山的速度是3000米/小时,所以走每一米需要时间1/3000小时

  下山的速度是4500米/小时,所以走每一米需要时间1/4500小时

  上山走的总路程=下山走的总路程=全程

  相当于用3000米/小时和4500米/小时的速度和(2+2.5)小时走了 2个全程(一个全程上山和一个全程下山)

  (2+2.5)÷(1/3000+1/4500)=8100米

  8. 钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根?

  解:

  2.1×2+1.5×2=7.2米,用100÷2=50根原材料。

  2.4×3=7.2米,用100÷3=33根……1段原材料。

  最后的这一段也要用1根原材料。

  所以共用去50+33+1=84根原材料。

  9. 有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?

  解法一:

  加入的6克锌相当于新合金的6÷36=1/6。

  原来的合金是新合金是1-1/6=5/6。

  铜没有变,占新合金的5/6÷(2+3)×2=1/3,新合金中的锌占1-1/3=2/3。

  所以新合金中的铜和锌的比是1/3:2/3=1:2

  解法二:

  原来的合金重36-6=30(克)

  原来的合金每份重30÷(2+3)=6(克)

  含铜6×2=12(克) ,含锌6×3=18(克)

  新合金中的合金比12÷(18+6)=1/2,即铜:锌=1:2

  10. 小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?

  解:

  行1/3的路程,速度是步行的4倍,说明用的时间是原来总时间的1/3÷4=1/12。

  行余下的1-1/3=2/3的路程,速度是步行的2倍,说明用的时间是原来总时间的2/3÷2=1/3。

  所以这35分钟相当于平时总时间的1-1/3-1/12=7/12

  所以小明步行上学需要35÷7/12=60分钟。

  解:

  35÷(4+2+1)=5(分钟)

  5×4÷3/1=60(分钟)

  答:小明步行上学需要60分钟.

  小升初数学:应用题综合训练 10

  1.甲、乙两人以均匀的速度绕圆形跑道按相反的方向跑步,他们的出发点分别在直径的两个端点,如果他们同时出发,那么在乙跑完100米时第一次相遇,甲跑一圈还差60米时,第二次相遇.跑道的长是几米?

  解:第二次甲跑一圈还差60米,说明第一次相遇时,甲行了1/3还少60÷3=20米。跑道长(100-20)÷(1/2-1/3)=480米

  2.甲、乙两个圆柱形容器,底面积比为4:3,甲容器水深7厘米,乙容器水深3厘米.再往两个容器各注入同样多的水,直到水深相等,这时水深几厘米?

  解:由于甲乙底面积之比是4:3,要使水深相等,那么注入甲乙相同体积的水的深度的比是3:4。所以,甲容器要注入(7-3)÷(4-3)×3=12厘米深的`水。

  所以这时的水深12+7=19厘米。

  3.有一辆沿公路不停地往返于M,N两地之间的汽车.老王从M地沿这条公路步行向N地,速度为每小时3.6千米,中途迎面遇到从N地驶来的这辆汽车,经20分钟又遇到这辆汽车从后面折回,再过50分钟又迎面遇到这辆汽车,再过40分钟又遇到这辆车再折回.N,M两地的路程有多少千米?

  4.用甲、乙、丙三个排水管排水,甲管排出1立方米水的时间,乙管能排出1.25立方米的水,丙管能排出1.5立方米的水.现在要排完某个水池的水,先开甲管,2小时后开乙管,几小时后再开丙管,到下午4时正好把水排完,且各个排水管排出的水量正好相等.问什么时候打开的丙管?

  解法一:

  要使排水量相等,甲管和乙管用的时间比是1.25:1=5:4,所以单独开乙管需要2÷(5-4)×4=8小时。

  乙管和丙管的时间比是1.5:1.25=6:5,所以单独开丙管需要8÷6×5=20/3小时,即6小时40分。

  所以丙管打开的时刻是10时20分。

  解法二:

  乙管先开2小时,比甲管多排2×1.25=2.5立方米。所以甲管用了2.5÷(1.25-1)=10小时。甲管10小时放水量丙管需要10×1÷1.5=20/3小时,即6小时40分。

  所以丙管打开的时刻是10时20分。

  5.有一项工程,由三个工程队每天轮流做.原计划按甲、乙、丙次序轮做,恰好整天完工;如果按乙、丙、甲次序轮流做,比原计划多用0.5天;如果按丙、甲、乙次序轮流做,比原计划多用1/3天.已知甲单独做13天完工,且3个工程队的效率各不相同,那么这项工程由甲、乙、丙三个队合作要几天?

  解:根据条件可以作如下分析:有两种情况分析。

  第一种情况:

  ①甲乙丙;甲乙丙;……;甲乙丙;甲

  ②乙丙甲;乙丙甲;……;乙丙甲;乙丙(1/2)

  ③丙甲乙;丙甲乙;……;丙甲乙;丙甲(1/3)

  三个工程队的工作效率的关系是:

  甲=乙+丙×1/2=丙+甲×1/3

  可以得到:丙=乙=甲×2/3,所以不符合条件。

  第二种情况:

  ①甲乙丙;甲乙丙;……;甲乙丙;甲乙丙

  ②乙丙甲;乙丙甲;……;乙丙甲;乙丙甲(1/2)甲(1/2)

  ③丙甲乙;丙甲乙;……;丙甲乙;丙甲乙(1/3)乙(2/3)

  可以得到:丙=甲×1/2,乙=甲×1/2÷2/3=甲×3/4

  所以三个工程队合作的时间是13÷(1+1/2+3/4)=52/9天。

  小升初数学:应用题综合训练 11

  1.六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?

  一班=二班+三班,二班=四班+五班;

  可知,五个班的总和=一班+二班+三班+二班=二班×3+三班×2=100

  所以二班×5>100>三班×5

  所以二班人数超过20,三班人数少于20人

  如果二班植树21棵,那么三班植树(100-21×3)÷2=17.5,棵数不能为小数。

  如果二班植树22棵,那么三班植树(100-22×3)÷2=17棵

  所以三班最多植树17棵。

  2.甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?

  乙多跑的20分钟,跑了20/60×11=11/3千米,结果甲共追上了11/3-2=5/3千米,需要5/3÷(13-11)=5/6小时,乙共行了11×(5/6+20/60)=77/6千米

  3.有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的.,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?

  这个题目要注意是“底面积”而不是“底面半径”,与高的关系!

  容器A中的水全部倒入容器B,容器B的水深就应该占容器高的(6×6)÷(8×8)=9/16

  所以容器高2÷(7/8-9/16)=6.4厘米

  4.有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.

  用进一法解决问题,次数要整数才行。

  需要跑的次数是104÷9=11次……5吨,所以要跑11+1=12次

  实际跑的次数是104÷(9+1)=10次……4吨,故10+1=11次

  往返一次1小时,所以提前(12-11)×1=1小时。

  5.师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?

  这个题目有点像鸡兔同笼问题:

  如果两人工作效率都提高24%,那么两人共加工零件225×(24%+1)=279个

  说明徒弟提高45%-24%=21%的工作效率就可以加工300-279=21个

  所以徒弟第一天加工21÷21%=100个,那么徒弟第二天加工了100×(1+45%)=145个

  那么师傅加工了300-145=155个零件。

  6.奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?

  利用等差数列来解答:

  行程每天增加2千米我是这样理解的,第一天按照原来的速度行使,从第二天开始,都比前一天多行2千米。所以形成了一个等差数列。

  由于前面四天和后面三天行的路程相等。

  去时,四天相当于原速行四天还要多2+4+6=12千米

  返回时,三天相当于原速行三天还要多8+10+12=30千米

  所以原速每天行30-12=18千米,可以求出学校距离百花山18×3+30=84千米

  小升初数学:应用题综合训练 12

  1.一支解放军部队从驻地乘车赶往某地抗洪抢险,如果将车速比原来提高1/9,就可比预定的时间20分钟赶到;如果先按原速度行驶72千米,再将车速比原来提高1/3,就可比预定的时间提前30分钟赶到.这支解放军部队的行程是多少千米?

  解:车速提高1/9,所用的时间就是预定时间的1÷(1+1/9)=9/10,所以预定时间是20÷(1-9/10)=200分钟。

  速度提高1/3,如果行完全程,所用时间就是预定时间的1÷(1+1/3)=3/4,即提前200×(1-3/4)=50分钟。

  但却提前了30分钟,说明有30÷50=3/5的路程提高了速度。

  所以,全程是72÷(1-3/5)=180千米。

  这题我有一巧妙的,小学生容易懂的算术方法。

  如将车速比原来提高9分之1,速度比变为10:9,所以时间比为9:10,原来要用时20x(10-9)=200分。

  如一开始就提高3分之1,就会用时:3x200/4=150分,这样提前50分,而实际提前30分,所以72千米占全程的1-30/50=20/50,所以全程72/(20/50)=180千米。

  回答者:纵览飞云-魔法师四级1-918:56

  2.一只船从甲码头到乙码头往返一次共用4小时,回来时顺水比去时每小时多行12千米.因此后2小时比前2小时多行18千米,那么甲、乙两个码头距离是几千米?

  解:逆水行的18÷2=9千米,顺水要行12×2-9=15千米。所以顺水速度是12÷(15-9)×15=30千米/小时。

  逆水速度是30-12=18千米/小时。所以两个码头相距18×2+9=45千米

  解:后2小时比前2小时多行18千米,意味着前2小时只行到了离乙码头18/2=9千米的地方。顺水比逆水每小时多行12千米,那么2小时就应该多行12x2=24千米,实际上少了24-18=6千米,从而,顺水只行了:2-6/12=1.5小时。逆水行9千米用了2-1.5=0.5小时,逆水速度是:9/0.5=18千米顺水速度是:18+12=30千米甲乙两码头的距离是:30x1.5=45千米。

  18÷12=1.5(时)就是回来时顺水所用的时间,那么去时所用的`时间就是4-1.5=2.5(时)

  那么去时的速度就是18÷(2.5-1.5)=18(千米)

  路程就是:18×2.5=45(千米)

  3.甲、乙两个班的学生人数的比是5:4,如果从乙班转走9名学生,那么甲班就比乙班人数多2/3.这时乙班有多少人?

  解:甲班比乙班多2/3,说明乙班3份,甲班3+2=5份,份数刚好没有变。

  说明乙班转走的9名同学刚好是4-3=1份。所以这时乙班人数是9×3=27人。

  解:乙班转走9人后两班人数之比为5:3

  则这个9人就是乙班原来人数的1/4,现在的1/3。所以乙班现在有9x3=27人`

  4.甲、乙两堆煤共重78吨,从甲堆运出25%到乙堆,则乙堆与甲堆的重量比是8:5.原来各有多少吨煤?

  解:后来甲堆有78÷(8+5)×5=30吨。

  原来甲堆就有30÷(1-25%)=40吨。

  原来乙堆就有78-40=38吨。

  小升初数学:应用题综合训练 13

  1. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?

  原来每天的利润是72×25%×100=1800元后来每件的利润是是72÷(1+25%)×(1-90%)=9元后来每天获得利润100×2.5×9=2250元所以,增加了2250-1800=450元

  2. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的'地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?

  利用份数来解答:甲车行3份,乙车就行了3×4/5=2.4份,72千米相当于4-2.4=1.6份,每份是72÷1.6=45千米所以A和B两站之间的距离是45×(3+4)=315千米

  利用分数来解答:甲车行全程的3/7,乙车就要行全程的3/7×4/5=12/3572千米对应的分率是4/7-12/35=8/35所以全程是72÷8/35=315千米

  小升初数学:应用题综合训练 14

  148.甲、乙、丙三人同时从A向B跑.当甲跑到B时,乙离B还有15米,丙离B还有32米;当乙跑到B时,丙离B还有20米;当丙跑到B时,一共用了25秒,乙每秒跑多少米?

  解:乙行15米,丙行32-20=12米。所以乙和丙的速度比是15:12=5:4

  所以当乙行到B时,行了5份,丙行了4份,所以全程是20÷(5-4)×5=100米。

  所以丙的速度是每秒100÷25=4米,乙的速度是每秒4÷4×5=5米

  149.小明从家去体育馆看球赛.去时他步行5分钟后,跑步8分钟,到达体育馆.回来时,他先步行10分钟后,开始跑步,结果比去时多用了3分15秒钟回到家.他跑步的速度与步行的速度比是多少?

  解:后来跑步用了5+8+3+1/4-10=25/4分,所以步行10-5=5分钟的路程和跑步8-25/4=7/4分钟的路程相等。

  所以跑步和步行的速度比是5:7/4=20:7。

  150.有一批零件,甲、乙两种车床都可以加工.如果甲车床单独加工,可以比乙车床单独加工提前10天完成任务.现在用甲、乙两车床一起加工,结果12天就完成了任务.如果只用甲车床单独加工需多少天完成任务?

  解:在明月清风老师的指导下,终于知道了算法。关键是分数拆分。

  合做12天完成,工效和是1/12

  把1/12拆分成两个单位分数

  12^2=144把144写成两数积的形式,其中一个数比另一个数大10。

  因为8×18=144;所以有12+8=20天。

  151.甲、乙两个书架,共有书3000册,甲的册数的2/5比乙的册数的1/4多420本,求两个书架各有书多少册?

  解:如果给乙的1/4加上420册,即给乙加上420x4=1680册,乙的1/4就与甲的2/5同样多。这时,甲、乙的册数比为1/4:2/5=5:8。

  所以,甲书架有书:(3000+1680)x5/(5+8)=1800册;乙书架有书:3000-1800=1200册。

  152.姐弟两人打印一批稿件,姐姐单独打印需要的时间是弟弟所需时间的3/8,姐姐先打印了这批稿件的2/5后,接着由弟弟单独打印,用24小时打印完,问姐姐打印了多少小时?

  解法一:

  另外的1-2/5=3/5如果弟弟做,需要的时间就相当于姐姐的3/5÷3/8=8/5,所以姐姐单独打印完需要24÷(2/5+8/5)=12小时,所以姐姐打了12×2/5=4.8小时。

  解法二:

  姐姐单独打印需要的时间是弟弟所需时间的3/8,姐姐先打印了这批稿件的'2/5需要的时间相当于弟弟完成同样任务所需总时间的2/5×3/8=3/20,接着由弟弟单独打印,需时为总时间的3/5,两比为1/4,共计用24小时。

  弟弟打剩下的3/5用时24×4/(1+4)=96/5小时,完成全部任务用96÷5÷3/5=32小时。姐姐单独打完用时是32×3/8=12小时。所以姐姐用了12×2/5=4.8小时。

  153.有甲、乙两个水管向水池注水,先开甲管,开放时间是单开乙管注满水池所需时间的1/3.然后开放乙管,开放的时间是单开甲管注满水池所需时间的1/3.这样注满水池的13/18.如果甲、乙两管同时开放,注满水池需3+3/5小时,那么单开甲管或单开乙管注满水池,各需要多少小时?

  解:用初中的方法解答一下。设甲管开放时间是x小时,乙管开放时间是y小时。

  有x/y×1/3+y/x×1/3=13/18,解得y/x=2/3

  因为1/y+1/x=5/18,所以,x=9,y=6

  小升初数学:应用题综合训练 15

  1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?

  答案:甲收8元,乙收2元。

  解:

  “三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。

  又因为“甲钓了三条”,相当于甲吃之前已经出资3x6=18元,“乙钓了两条”,相当于乙吃之前已经出资2x6=12元。

  而甲乙两人吃了的价值都是10元,所以

  甲还可以收回18-10=8元

  乙还可以收回12-10=2元

  刚好就是客人出的钱。

  2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?

  答案22/25

  最好画线段图思考:

  把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。增加的成本2份刚好是下降利润的2份。售价都是25份。

  所以,今年的成本占售价的22/25。

  3.甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米?

  解:

  原来甲.乙的`速度比是5:4

  现在的甲:5×(1-20%)=4

  现在的乙:4×(1+20%)4.8

  甲到B后,乙离A还有:5-4.8=0.2

  总路程:10÷0.2×(4+5)=450千米

  4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?

  答案为64:27

  解:根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。

  根据“体积增加1/3”,可知体积是原来的4/3。

  体积÷底面积=高

  现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27

  或者现在的高:原来的高=64/27:1=64:27

  5.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。橘子正好占总数的13分之2。一共运来水果多少吨?

  第二题:答案为65吨

  橘子+苹果=30吨

  香蕉+橘子+梨=45吨

  所以橘子+苹果+香蕉+橘子+梨=75吨

  橘子÷(香蕉+苹果+橘子+梨)=2/13

  说明:橘子是2份,香蕉+苹果+橘子+梨是13份

  橘子+香蕉+苹果+橘子+梨一共是2+13=15份

【小升初数学:应用题综合训练】上海花千坊相关的文章:

小升初数学应用题经典综合训练及答案03-20

小升初数学应用题综合训练及答案03-20

小升初数学应用题综合专题训练12-05

有关小升初的数学应用题综合训练02-02

小升初数学应用题综合训练系列07-07

小升初数学应用题综合训练及解析12-06

小升初数学应用题综合训练题12-06

小升初综合应用题训练12-05

小升初应用题专题:综合训练12-04