上海花千坊

考研资讯

考研数学复习有什么得分技巧

时间:2021-06-10 16:11:19 考研资讯 我要投稿
  • 相关推荐

考研数学复习有什么得分技巧

   强化阶段是考研数学复习的重要阶段,我们需要抓住复习的重点。小编为大家精心准备了考研数学复习的秘诀,欢迎大家前来阅读。

考研数学复习有什么得分技巧

  考研数学复习的技巧

  ▶踩点得分

   对于同一道题目,有的人理解得深,有的人理解得浅,有的人解答得多,有的人解答得少。为了区分这种情况,阅卷评分办法是懂多少知识就给多少分。也叫踩点给分,即踩上知识点就得分,踩得多就多得分。

   因此,对于难度较大的题目可以采用这一策略,其基本精神就是会做的题目力求不失分,部分理解的题目力争多得分。因此,会做的题目要特别注意表达准确、逻辑清晰、书写规范、语言严谨,防止被“分段扣点分”。

  ▶大题拿小分

   有的大题难度比较大,确实啃不动。一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步。

   帮帮提醒研研们,尚未成功不等于失败,特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分。最后结论虽然未得出,但分数却已过半。

  ▶以后推前

   考生在解题过程中卡在某一步是很常见,这时可以换一种思路,也许就会柳暗花明又一村。同学们可以把卡壳处空下来,先承认中间结论,再往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

  ▶跳步解答

   由于考试时间的限制,“卡壳处”来不及攻克了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。

  ▶以退求进

   以退求进是一种重要的解题策略,也是做题的最高境界。如果你不能解决所提出的问题,那么可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。

   总之,退到一个能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的'启发。这个技巧需要同学们做题做到一定境界来体会,如果可以做到这一步,那么什么难题都不是难题了。

   学习中要积极学习借鉴他人的成功经验,才能多快好省的提高自己。大家可以根据自己的需要灵活应用,不断优化改进自己的答题方法和技巧。

  考研数学强化复习任务及做题指导

  强化阶段的主要任务是归纳题型,总结方法,因为题型的重复率的确太高了。

   为了达到这个目的,可以通过两种途径来实现这个目标,一是通过看辅导书自己来训练,另外就是配合上强化班,在强化班上,我们会把考研常考题型系统归纳,并且针对每种总结出相应的常规方法,培养大家对常规题型的解题能力。

   在做题的时候,有意识地加强练习做题的感觉,对复习效果会事半功倍,在做题时可以从以下几个方面入手:

  第一,读题

   做题要从题目的叙述开始。拿到一个题目,做题的第一步是要仔细阅读题目,把握题目的主要含义。阅读题目直到即使不看题目,也能记住题目的意思。

  第二,找出切入点

   仔细考虑题目的各主要部分,将它们以不同的方式进行组合,再调动已有知识,寻求其与题目之间的联系,试着认清题目中所隐含的你熟悉的东西。

  第三,分析题目要求

  分析下题目所求需要哪些条件,然后寻找这些条件与第二问找出的思路的关系,这样就能找到解题点了!

   如果你有意识地使用这种方式解题,那么一段时间过后,你会发现自己的解题能力、解题技巧、解题速度与正确性都会大大提高。

  考研数学线性代数方程组的高频考点

  其中我们应当掌握:

  1、非齐次线性方程组解的结构及通解;

  2、齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法;

  3、齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件;

   4、矩阵初等变换的概念,初等矩阵的性质,矩阵等价的概念,矩阵的秩的概念,用初等变换求矩阵的秩和逆矩阵;

  5、向量、向量的线性组合与线性表示的概念;

  6、用初等行变换求解线性方程组的方法;

  7、基变换和坐标变换公式,过渡矩阵。(数一)

  8、向量空间、子空间、基底、维数、坐标等概念;(数一)

  9、向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法;

  10、向量组的极大线性无关组和向量组的秩的概念和求解;

  11、向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系;

   矩阵的特征值特征向量与二次型相当于是求解线性方程组的应用,出题比较灵活,有些题目技巧性较强,复习起来也是比较有意思的一章。在考试中也是比较容易出大题的内容。

  其中我们应当掌握:

  1、规范正交基、正交矩阵的概念以及它们的性质;

  2、内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法;

  3、矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量;

  4、实对称矩阵的特征值和特征向量的性质;

  5、相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法;

   6、二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理;

  7、正定二次型、正定矩阵的概念和判别法。

  8、正交变换化二次型为标准形,配方法化二次型为标准形。


【考研数学复习有什么得分技巧】上海花千坊相关的文章:

考研数学有哪些复习的技巧11-14

考研数学复习有什么思路12-22

考研数学有什么复习法则12-22

考研数学复习有什么顺序11-25

考研英语完型复习得分的技巧12-19

考研数学有哪些复习技巧指导12-07

考研数学复习有哪些做题技巧12-20

考研数学复习解题有哪些技巧11-06

考研数学复习答题技巧有哪些06-23