- 相关推荐
广西桂林2024年中考数学考试说明
中考的目的是全面、准确地反映初中毕业生在学科学习方面所达到的水平。下面为大家搜索整理了关于广西桂林2024年中考数学考试说明,欢迎参考阅读,希望对大家有所帮助!想了解更多相关信息请持续关注我们应届毕业生培训网!
考试目的
初中毕业升学考试是义务教育阶段的终结性考试,目的是全面、准确地反映初中毕业生在学科学习方面所达到的水平。考试结果既是衡量学生是否达到初中毕业标准的重要依据,也是普通高中招生录取的重要依据之一。
命题的指导思想
认真贯彻党的十八大精神,以科学发展观为指导,全面贯彻党的教育方针。数学学科的初中毕业升学考试,应有利于贯彻新课改理念,全面推进素质教育;有利于检查初中教学质量,促进义务教育均衡发展,全面提高教育教学质量;有利于推动课程改革,减轻学生的过重学业负担,促使教师转变教学方式、学生转变学习方式,培养学生的创新精神和实践能力;有利于考试评价制度改革和高一级学校选拔合格的具有学习潜能的新生。
命题的基本原则
(一)注重导向性。试题有利于全面实施素质教育,推进城乡公平教育,促进教育均衡发展;有利于继续推进基础教育课程改革,促进教师转变教学方式和学生转变学习方式;有利于培养学生正确的人生观和价值观;有利于初高中教学的衔接,为学生在高中阶段的学习打好基础。
(二)注重科学性。严格按照规定的程序和要求组织命题,做到考试内容和形式科学,符合考生的年龄特征和认知水平;试题内容科学,难易适当,表述正确;试卷结构科学、合理,形式规范;具备较高信度、效度和良好的区分度。
(三)注重基础性。试题要在指导学生掌握必要的基础知识的同时,加强考查学生对知识与技能及数学思想方法的理解和掌握情况,特别是考查运算能力和综合运用所学知识分析和解决问题的能力。
(四)注重能力立意。试题内容要以课程教材作为基础材料,并紧密联系学生的实际,联系社会生活和科技发展的需要。考查灵活运用基础知识和基本技能分析问题、解决实际问题的能力,尤其注重考查探究能力和实践能力。要注重考查数学知识在生活中的应用,要引导学生关注社会中的热点、焦点问题,做到课内课外相结合,促使学生的学习及考试的内容更加贴近学生的生活和社会发展实际,从而更好地考查学生学习探究应用的能力和水平。
(五)体现教育性。发挥试题的教育功能,有机渗透科学精神和人文精神,关注人与自然、社会的协调发展。对学生的学习过程、学习方法,及其对事物、生活、人生的情感、态度和价值观进行考查,以更好地培养学生的基本素养、科学和人文精神,促进全面发展。
考试范围
根据《义务教育数学课程标准》所规定的第三学段(7~9年级)涉及到的四个知识领域,即“数与代数”、“图形与几何”、“统计与概率”、“综合与实践”的内容。参照人民教育出版社出版的义务教育课程标准(教育部审定义务教育教科书)《数学》(7~9年级)教材。
考试内容与要求
初中毕业与升学数学学科考试在知识与技能、过程与方法、情感与态度、数学思想、解决问题等方面对学生进行全面的考查。重视对能力的考查,特别是考查运算能力,逻辑思维的能力;重点考查基本的数学基础知识和基本技能,以及基本的数学思想和方法;关注考查学生的数感、符号意识、空间观念、统计观念,以及运用一般图表、图象处理数据信息的能力,包括对数学语言的阅读理解及表达能力;能够结合实际背景和相关学科中的数学问题理解和应用;适当设置一些讨论性、开放性、探索性的问题,考查学生的创新意识和实践能力。
考试要求的知识技能目标分为四个不同层次:了解(认识)、理解、掌握、灵活运用.其具体涵义如下:
了解(认识):能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象。
理解:能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。
掌握:能在理解的基础上,会把对象运用到新的情境中。
灵活运用:能综合运用知识,熟练、灵活、合理地选择与运用有关的方法完成特定的数学任务。
中考数学知识点
数与代数
(1)有理数
①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。
②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值,知道 的含义(这里 表示有理数)。
③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)。
④理解有理数的运算律,并能运用运算律简化运算。
⑤能运用有理数的运算解决简单的问题。
(2)实数
①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。
②了解开方与乘方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根。
③了解无理数和实数的概念,知道实数与数轴上的点一一对应。能求实数的相反数与绝对值。
④能用有理数估计一个无无理数的大致范围。
⑤了解近似数与精确度的概念;在解决实际问题中,能按问题的要求对结果取近似值。
⑥了解二次根式、最简二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关的简单四则运算。
(3)代数式
①借助现实情境了解代数式,理解用字母表示数的意义。
②能分析具体问题中的简单数量关系,并用代数式表示。
③会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。
(4)整式与分式
①了解整数指数幂的意义和基本性质,会用科学记数法表示数。
②理解整式的概念,掌握合并同类型和去括号的法则,能进行简单的整式加、减运算;能进行简单的整式乘法运算(其中的多项式相乘仅指一次式之间相乘及一次式与二次式相乘)。
③会推导乘法公式: ; ,了解公式的几何背景,并能利用公式进行简单计算。
④能用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。
⑤了解分式和最简方式的概念,能利用分式的基本性质进行约分和通分,能进行简单的分式加、减、乘、除运算。
分式混合运算法则
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.
分式混合运算法则:
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);
乘法进行化简,因式分解在先,分子分母相约,然后再行运算;
加减分母需同,分母化积关键;找出最简公分母,通分不是很难;
变号必须两处,结果要求最简.
二次根式的加减法知识点总结
二次根式的加减法
知识点1:同类二次根式
(Ⅰ)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如这样的二次根式都是同类二次根式。
(Ⅱ)判断同类二次根式的方法:(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。
知识点2:合并同类二次根式的方法
合并同类二次根式的理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。
知识点3:二次根式的加减法则
二次根式相加减先把各个二次根式化成最简二次根式,再把同类二次根式合并,合并的方法为系数相加,根式不变。
知识点4:二次根式的混合运算方法和顺序
运算方法是利用加、减、乘、除法则以及与多项式乘法类似法则进行混合运算。运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的。
知识点5:二次根式的加减法则与乘除法则的区别
乘除法中,系数相乘,被开方数相乘,与两根式是否是同类根式无关,加减法中,系数相加,被开方数不变而且两根式须是同类最简根式。
圆的定理:
1、不在同一直线上的三点确定一个圆。
2、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧。
推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
3、圆是以圆心为对称中心的中心对称图形。
4、圆是定点的距离等于定长的点的集合。
5、圆的内部可以看作是圆心的距离小于半径的点的集合。
6、圆的外部可以看作是圆心的距离大于半径的点的集合。
7、同圆或等圆的半径相等。
8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
圆的知识:
平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
圆心:
(1)如定义(1)中,该定点为圆心
(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示
直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积。πr,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
【广西桂林中考数学考试说明】上海花千坊相关的文章:
广西外国语学院08-22
广西小吃玉林牛巴的做法10-11
小升初数学考试试卷02-06
数学考试反思(通用20篇)10-17
广西三月三传统的美味特色小吃内容04-18
2023年小升初数学考试试题及答案06-19
PS混合模式选项说明01-03
php开发主管的职责说明05-15
有关小升初数学考试归一问题知识点01-07
植物景观设计说明10-07