上海花千坊

数学

六年级上册数学圆的知识点整理

时间:2022-03-25 16:38:21 数学 我要投稿
  • 相关推荐

六年级上册数学圆的知识点整理

  在我们上学期间,是不是经常追着老师要知识点?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。为了帮助大家更高效的学习,以下是小编收集整理的六年级上册数学圆的知识点整理,希望能够帮助到大家。

六年级上册数学圆的知识点整理

  六年级上册数学圆的知识点整理 篇1

  一、 认识圆

  1、圆的定义:圆是由曲线围成的一种平面图形。

  2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

  一般用字母O表示。它到圆上任意一点的距离都相等.

  3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。

  把圆规两脚分开,两脚之间的距离就是圆的半径。

  4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。

  直径是一个圆内最长的线段。

  5、圆心确定圆的位置,半径确定圆的大小。

  6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。

  7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的 。

  用字母表示为:d=2r或r =

  8、轴对称图形:

  如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

  折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)

  9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。

  10、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。

  只有2条对称轴的图形是: 长方形

  只有3条对称轴的图形是: 等边三角形

  只有4条对称轴的图形是: 正方形;

  有无数条对称轴的图形是: 圆、圆环。

  二、圆的周长

  1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。

  2、圆周率实验:

  在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。

  发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。

  3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

  用字母π(pai) 表示。

  (1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。

  圆周率π是一个无限不循环小数。在计算时,一般取π ≈ 3.14。

  (2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。

  (3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

  4、圆的周长公式: C= πd d = C ÷π

  或C=2π r r = C ÷ 2π

  5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

  在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

  6、区分周长的一半和半圆的周长:

  (1) 周长的一半:等于圆的周长÷2 计算方法:2π r ÷ 2 即 π r

  (2)半圆的周长:等于圆的周长的一半加直径。 计算方法:πr+2r

  三、圆的面积

  1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S表示。

  2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。

  3、圆面积公式的推导:

  (1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。

  (2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。

  (3)、拼出的图形与圆的周长和半径的关系。

  圆的半径 = 长方形的宽

  圆的周长的一半 = 长方形的长

  因为: 长方形面积 = 长 × 宽

  所以: 圆的面积 = 圆周长的一半 × 圆的.半径

  S圆 = πr × r

  圆的面积公式: S圆 = πr2

  4、环形的面积:

  一个环形,外圆的半径是R,内圆的半径是r。(R=r+环的宽度.)

  S环 = πR2-πr2 或

  环形的面积公式: S环 = π(R2-r2)。

  5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

  而面积扩大或缩小的倍数是这倍数的平方倍。 例如:

  在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。

  6、两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。 例如:

  两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9

  7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π

  8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。

  9、确定起跑线:

  (1)、每条跑道的长度 = 两个半圆形跑道合成的圆的周长 + 两个直道的长度。

  (2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同)

  (3)、每相邻两个跑道相隔的距离是: 2×π×跑道的宽度

  (4)、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

  11、常用各π值结果:

  π = 3.14

  2π = 6.28

  3π = 9.42

  5π = 15.7

  6π = 18.84

  7π = 21.98

  9π = 28.26

  10π = 31.4

  16π = 50.24

  36π = 113.04

  64π = 200.96

  96π = 301.44

  4π = 12.56 8π = 25.12 25π = 78.5

  12、常用平方数结果

  = 121 = 144 = 169 = 196 = 225

  = 256 = 289 = 324 = 361

  六年级上册数学圆的知识点整理 篇2

  一、圆的特征

  1、圆是平面内封闭曲线围成的平面图形。

  2、圆的特征:外形美观,易滚动。

  3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

  圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

  半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

  直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

  同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

  4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。

  5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

  有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

  有二条对称轴的图形:长方形

  有三条对称轴的图形:等边三角形

  有四条对称轴的图形:正方形

  有无条对称轴的图形:圆,圆环

  6、画圆

  (1)圆规两脚间的距离是圆的半径。

  (2)画圆步骤:定半径、定圆心、旋转一周。

  二、圆的周长:

  围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

  1、圆的周长总是直径的三倍多一些。

  2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

  即:圆周率π =周长÷直径≈3.14。

  所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr。

  圆周率π是一个无限不循环小数,3.14是近似值。

  3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

  4、半圆周长=圆周长一半+直径= πr+d

  三、圆的面积s

  1、圆面积公式的推导

  如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

  圆的半径=长方形的宽

  圆的`周长的一半=长方形的长

  长方形面积=长×宽

  所以,圆的面积=圆的周长的一半(πr)×圆的半径(r)。

  S圆=πr×r=πr2

  2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。

  周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。

  3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

  4、环形面积=大圆–小圆=πR2-πr2

  扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

  5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

  一个圆的半径增加a厘米,周长就增加2πa厘米。

  一个圆的直径增加b厘米,周长就增加πb厘米。

  6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。

  7、常用数据

  π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

  小学数学比和比例知识点

  1、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。

  比的性质用于化简比。

  比表示两个数相除;只有两个项:比的前项和后项。

  2、比和比例的区别

  (1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比。比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4这是比例。

  (2)比的基本性质和比例的基本性质意义不同、应用不同。

  比的性质:比的前项和后项都乘或除以一个不为零的数。比值不变。

  比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。比例的性质用于解比例。联系:比例是由两个相等的比组成。

  数学分数的基本性质

  分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。

  联系分数与除法的关系以及“商不变”的规律,来理解分数的基本性质。

  分子相当于被除数,分母相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此分数的分子和分母都乘或除以相同的数(0除外),分数的大小也是不变的。

  运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

【六年级上册数学圆的知识点整理】上海花千坊相关的文章:

中考数学圆的重点知识点整理12-02

圆的有关概念与性质初中数学知识点整理01-19

数学六年级上册圆的比例知识点02-18

初二数学上册知识点整理07-27

九年级数学下册圆的知识点整理01-10

六年级数学上册知识点:圆12-01

数学六年级上册圆的比例知识点归纳01-18

六年级上册数学知识点整理01-19

小学数学六年级上册概念知识点整理07-24