上海花千坊

八年级数学上册知识点

时间:2023-10-08 16:11:44 海洁 数学 我要投稿

人教版八年级数学上册知识点

  在日常的学习中,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点就是学习的重点。掌握知识点有助于大家更好的学习。下面是小编帮大家整理的人教版八年级数学上册知识点,仅供参考,希望能够帮助到大家。

人教版八年级数学上册知识点

  八年级数学上册知识点 1

  全等三角形知识点

  1、全等图形:能够完全重合的两个图形就是全等图形。

  2、全等图形的性质:全等多边形的对应边、对应角分别相等。

  3、全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。

  说明:

  全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。

  这里要注意:

  (1)周长相等的两个三角形,不一定全等;

  (2)面积相等的两个三角形,也不一定全等。

  小练习

  1、下列说法中正确的说法为()

  ①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,

  A、①②③④B、①③④C、①②④D、②③④

  2、一个正方形的侧面展开图有()个全等的正方形

  A、2个B、3个C、4个D、6个

  3、对于两个图形,给出下列结论,其中能获得这两个图形全等的结论共有()

  ①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等、

  A、1个B、2个C、3个D、4个

  三角形全等的判定知识点

  1、三角形全等的判定公理及推论有:

  (1)“边角边”简称“SAS”,两边和它们的夹角对应相等的两个三角形全等(“边角边”或“SAS”)。

  (2)“角边角”简称“ASA”,两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“ASA”)。

  (3)“边边边”简称“SSS”,三边对应相等的两个三角形全等(“边边边”或“SSS”)。

  (4)“角角边”简称“AAS”,有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“AAS”)。

  2、直角三角形全等的判定

  利用一般三角形全等的'判定都能证明直角三角形全等、

  斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“HL”)、

  注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。

  小练习

  1、已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可补充的条件是______

  核心考点:全等三角形的判定

  2、王师傅在做完门框后,常常在门框上斜钉两根木条,这样做的数学原理是______

  核心考点:三角形的稳定性

  3、将两根钢条AA’、BB’的中点O连在一起,使AA’、BB’可以绕着点O自由旋转,就做成了一个测量工件,则A’B’的长等于内槽宽AB,那么判定△OAB≌△OA’B’的理由是______

  核心考点:全等三角形的判定

  角的平分线的性质知识点

  1、角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

  2、判定定理:到角的两边距离相等的点在该角的角平分线上。

  3、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:

  ①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),

  ②、回顾三角形判定,搞清我们还需要什么,

  ③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)

  八年级数学上册知识点 2

  一、分式

  ※1、两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式.

  整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那么称 为分式,对于任意一个分式,分母都不能为零.

  ※2、整式和分式统称为有理式,即有:

  ※3、进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:

  分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.

  ※4、一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分.

  二、分式的乘除法

  ※1、分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘.

  ※2、分式乘方,把分子、分母分别乘方.

  逆向运用 ,当n为整数时,仍然有 成立.

  ※3、分子与分母没有公因式的分式,叫做最简分式.

  三、分式的加减法

  ※1、分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

  ※2、分式的加减法:

  分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减.

  (1)同分母的分式相加减,分母不变,把分子相加减;

  上述法则用式子表示是:

  (2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;

  上述法则用式子表示是:

  ※3、概念内涵:

  通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的`字母,取各分母所有字母的次幂的积,如果分母是多项式,则首先对多项式进行因式分解.

  四、分式方程

  ※1、解分式方程的一般步骤:

  ①在方程的两边都乘最简公分母,约去分母,化成整式方程;

  ②解这个整式方程;

  ③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去.

  ※2、列分式方程解应用题的一般步骤:

  ①审清题意;

  ②设未知数;

  ③根据题意找相等关系,列出(分式)方程;

  ④解方程,并验根;

  ⑤写出答案.

  数学解题方法与技巧

  填空题答题技巧

  要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。

  对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。

  解答题答题技巧

  (1)仔细审题。注意题目中的关键词,准确理解考题要求。

  (2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。

  (3)给出结论。注意分类讨论的问题,最后要归纳结论。

  (4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。

  初中数学有理数的运算知识点

  加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

  除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

  八年级数学上册知识点 3

  一、平面直角坐标系:

  在平面内有公共原点而且互相垂直的两条数轴,构成了平面直角坐标系。

  二、知识点与题型总结:

  1、由点找坐标:

  A点的坐标记作A( 2,1 ),规定:横坐标在前,纵坐标在后。

  2、由坐标找点:例找点B( 3,-2 ) ?

  由坐标找点的方法:先找到表示横坐标与纵坐标的点,然后过这两点分别作x轴与y轴的垂线,垂线的交点就是该坐标对应的点。

  各象限点坐标的符号:

  ①若点P(x,y)在第一象限,则x > 0,y > 0 ;

  ②若点P(x,y)在第二象限,则x < 0,y > 0 ;

  ③若点P(x,y)在第三象限,则x < 0,y < 0 ;

  ④若点P(x,y)在第四象限,则x > 0,y < 0 。

  典型例题:

  例1、点P的坐标是(2,-3),则点P在第四象限。

  例2、若点P(x,y)的坐标满足xy>0,则点P在第一或三象限。

  例3、若点A的坐标为(a^2+1, -2–b^2) ,则点A在第四象限。

  4、坐标轴上点的坐标符号:

  坐标轴上的点不属于任何象限。

  ① x轴上的点的纵坐标为0,表示为(x,0),

  ② y轴上的点的横坐标为0,表示为(0,y),

  ③原点(0,0)既在x轴上,又在y轴上。

  例4、点P(x,y )满足xy = 0,则点P在x轴上或y轴上。 .

  5、与坐标轴平行的两点连线:

  ①若AB‖ x轴,则A、B的纵坐标相同;

  ②若AB‖ y轴,则A、B的横坐标相同。

  例5、已知点A(10,5),B(50,5),则直线AB的位置特点是(A )

  A、与x轴平行B、与y轴平行C、与x轴相交,但不垂直D、与y轴相交,但不垂直

  6、象限角平分线上的点:

  ①若点P在第一、三象限角的平分线上,则P( m, m );

  ②若点P在第二、四象限角的平分线上,则P( m, -m )。

  例6、已知点A(2a+1,2+a)在第二象限的平分线上,试求A的坐标。

  解:由条件可知:2a+1 +(2+a)=0,解得a = -1,

  ∴ A(-1,1)。

  例7、已知点M(a+1,3a-5)在两坐标轴夹角的平分线上,试求M的坐标。

  解:当在一、三象限角平分线上时,a+1=3a-5,

  解得:a=3 ∴ M(4,4)

  当在二、四象限角平分线上时,a+1+(3a-5 )=0,

  解得:a=1 ∴ M(2,-2)

  ∴M的坐标为(4,4)或(2,-2)

  7、关于坐标轴、原点的对称点:

  ①点(a, b )关于X轴的对称点是(a , -b );

  ②点(a, b )关于Y轴的对称点是( -a , b );

  ③点(a, b )关于原点的对称点是( -a , -b )。

  例8、已知点A(3a-1,1+a)在第一象限的平分线上,试求A关于原点的对称点的坐标。

  解:由条件得:3a-1=1+a解得:a=1,∴ A(2,2),

  ∴ A关于原点的对称点的坐标为(-2,-2)。

  8、点到坐标轴的距离:

  ①点( x, y )到x轴的距离是∣y∣;

  ②点( x, y )到x轴的距离是∣x∣。

  例9、点P到x轴、y轴的距离分别是2,1,则点P的`坐标可能为?

  答案:(1,2)、(1,-2)、(-1,2)、(-1,-2) 。

  三、知识拓展与提高:

  例10、在平面直角坐标系中,已知两点A(0,1),B(8,5),点P在x轴上,则PA + PB的最小值是多少?

  解:作点A(0,1)关于x轴的对称点A(0,-1),连接AB与x轴交于点P,

  则AB路径最短,即PA + PB最小。

  根据勾股定理得:AB = √[(1+5)^2 + 8^2] = 10 。

  ∴PA + PB的最小值是10 。

  如何学好初中数学的方法

  多做练习题

  要想学好初中数学,必须多做练习,我们所说的“多做练习”,不是搞“题海战术”。只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广等等。

  课后总结和反思

  在进行单元小结或学期总结时,要做到以下几点:一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。

  初中数学有理数知识点

  1、有理数的加法运算

  同号两数来相加,绝对值加不变号。

  异号相加大减小,大数决定和符号。

  互为相反数求和,结果是零须记好。

  “大”减“小”是指绝对值的大小。

  2、有理数的减法运算

  减正等于加负,减负等于加正。

  有理数的乘法运算符号法则。

  同号得正异号负,一项为零积是零。

  3、有理数混合运算的四种运算技巧

  转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算。

  凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解。

  分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算。

  巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。

  八年级数学上册知识点 4

  一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

  特别地,我们规定0的算术平方根是0。

  一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根)

  一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

  求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

  一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。

  正数的.立方根是正数;0的立方根是0;负数的立方根是负数。

  求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。

  有理数和无理数统称为实数,即实数可以分为有理数和无理数。

  每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。

  在数轴上,右边的点表示的数比左边的点表示的数大。

  实数知识点

  平方根:

  ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

  ③一个正数有2个平方根/0的平方根为0/负数没有平方根。

  ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:

  ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:

  ①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

  ③每一个实数都可以在数轴上的一个点来表示。

  八年级数学上册知识点 5

  一、勾股定理

  勾股定理:直角三角形两直角边的平方和等于斜边的平方。

  我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”。结论为:“勾三股四弦五”。

  a2+b2=c2

  2221、如果三角形的三边长a、b、c满足a+b=c,那么这个三角形是直角三角形。

  2222、满足a+b=c的3个正整数a、b、c称为勾股数。(例如,3、4、5是一组勾股

  数)。利用勾股数可以构造直角三角形。

  二、平方根

  1、定义——一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也称为二次方根。也就是说,如果x2=a,那么x就叫做a的平方根。

  2、一个正数有2个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根。

  3、求一个数a的平方根的运算,叫做开平方。

  4、正数a有两个平方根,其中正的平方根,也叫做a的算术平方根。

  例如:4的平方根是±2,其中2叫做4的算术平方根,记作=2;2的平方根是±其中2的算术平方根。

  0只有一个平方根,0的平方根也叫做0的算术平方根,即

  三、立方根

  1、定义——一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也称为三次方根。也就是说,如果x=a,那么x就叫做a的立方根,数a的立方根记作“,读作“三次根号a”。

  2、求一个数a的立方根的运算,叫做开立方。

  3、正数的立方根是正数,负数的立方根是负数,0的立方根是0。

  四、实数

  1、无限不循环小数称为无理数。

  2、有理数和无理数统称为实数。

  3、每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点都表示一个实数,实数与数轴上的.点是一一对应的。

  五、近似数与有效数字

  1、例如,本册数学课本约有100千字,这里100是一个近似似数。

  2、对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。

  怎么样才能打好初二数学基础

  第一,重视初二数学公式。有很多同学数学学不好就是因为对概念和公式不够重视,具体的表现为对初二数学概念的理解只是停留在表明,不去挖掘引申的含义,对数学概念的特殊情况不明白。还有对数学概念和公式有的学生只是死记硬背,初二学生缺乏对概念的理解。

  还有一部分初二同学不重视对数学公式的记忆。其实记忆是理解的基础。我们设想如果你不能将数学公式烂熟于心,那么又怎么能够在数学题目中熟练的应用呢?

  第二,就是总结那些相似的数学题目。当我们养成了总结归纳的习惯,那么初二的学生就会知道自己在解决数学题目的时候哪些是自己比较擅长的,哪些是自己还不足的。

  同时善于总结也会明白自己掌握哪些数学的解题方法,只有这样你才能够真正掌握了初二数学的解题技巧。其实,做到总结和归纳是学会数学的关键,如果初二学生不会做到这一点那么久而久之,不会的数学题目还是不会。

  集合的定义

  集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。

  例如,全中国人的集合,它的元素就是每一个中国人。通常用大写字母如A,B,S,T……表示集合,而用小写字母如a,b,x,y……表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y?S。

  八年级数学上册知识点 6

  1、平均数

  ①一般地,对于n个数x1x2...xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。

  ②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数

  2、中位数与众数

  ①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数

  ②一组数据中出现次数最多的那个数据叫做这组数据的众数

  ③平均数、中位数和众数都是描述数据集中趋势的统计量

  ④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

  ⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息

  ⑥各个数据重复次数大致相等时,众数往往没有特别意义

  3、从统计图分析数据的集中趋势

  4、数据的离散程度

  ①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的`偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量

  ②数学上,数据的离散程度还可以用方差或标准差刻画

  数学的方法和技巧

  狠抓“双基”训练

  “双基”即基础知识与基本技能。基础知识是指数学概念、定理、法则、公式以及各种知识之间的内在联系;基本技能是一种较稳定的心理因素,是一种已经程式化了的动作,初中数学基本技能包括运算技能、画图技能、运用数字语言的技能、推理论证的技能等。只有扎实地掌握“双基”,才能灵活应用、深入探索,不断创新。

  解决疑难

  这是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并经常把容易错的地方拿来复习强化,作适当的重复性练习,把从老师、同学处获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。

  初中数学二元一次方程组知识点

  (一)定义:含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。

  (二)二元一次方程组的解法

  (1)代入法

  由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。

  (2)因式分解法

  在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。

  (3)配方法

  将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。

  (4)韦达定理法

  通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。

  (5)消常数项法

  当方程组的两个方程都缺一次项时,可用消去常数项的方法解。

  ③方差是各个数据与平均数差的平方的平均数

  ④其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根

  ⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

  八年级数学上册知识点 7

  函数及其相关概念

  1、变量与常量

  在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

  一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

  2、函数解析式

  用来表示函数关系的数学式子叫做函数解析式或函数关系式。

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

  3、函数的三种表示法及其优缺点

  (1)解析法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图像法

  用图像表示函数关系的方法叫做图像法。

  4、由函数解析式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  数据的收集、整理与描述

  一、知识框架

  二、知识概念

  1、全面调查:考察全体对象的调查方式叫做全面调查、

  2、抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查、

  3、总体:要考察的全体对象称为总体、

  4、个体:组成总体的每一个考察对象称为个体、

  5、样本:被抽取的所有个体组成一个样本、

  6、样本容量:样本中个体的数目称为样本容量、

  7、频数:一般地,我们称落在不同小组中的数据个数为该组的频数、

  8、频率:频数与数据总数的比为频率、

  9、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距、

  四边形

  平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

  平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

  平行四边形的判定

  1、两组对边分别相等的四边形是平行四边形

  2、对角线互相平分的四边形是平行四边形;

  3、两组对角分别相等的四边形是平行四边形;

  4、一组对边平行且相等的四边形是平行四边形。

  三角形的中位线平行于三角形的第三边,且等于第三边的一半。

  直角三角形斜边上的中线等于斜边的一半。

  矩形的定义:有一个角是直角的平行四边形。

  矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD

  矩形判定定理:

  1、有一个角是直角的平行四边形叫做矩形。

  2、对角线相等的平行四边形是矩形。

  3、有三个角是直角的四边形是矩形。

  菱形的定义:邻边相等的平行四边形。

  菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  菱形的判定定理:

  1、一组邻边相等的平行四边形是菱形。

  2、对角线互相垂直的平行四边形是菱形。

  3、四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)

  正方形定义:一个角是直角的菱形或邻边相等的矩形。

  正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。

  正方形判定定理:

  1、邻边相等的矩形是正方形。

  2、有一个角是直角的菱形是正方形。

  梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

  直角梯形的定义:有一个角是直角的梯形

  等腰梯形的定义:两腰相等的梯形。

  等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

  等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

  解梯形问题常用的辅助线:如图

  线段的重心就是线段的中点。平行四边形的'重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是—1(约为0、618)的矩形叫做黄金矩形。

  如何提高解答数学题的能力

  数学的解答能力,主要通过实际的练习来提高。数学练习应注意以下几点:

  (1)、端正态度,充分认识到数学练习的重要性。实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现。

  (2)、要有自信心与意志力。数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯。

  (3)、要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答。解答后,还应进行检查。

  多项式定义

  在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。

  对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。

  八年级数学上册知识点 8

  1、实数的概念及分类

  ①实数的分类

  ②无理数

  无限不循环小数叫做无理数。

  在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

  开方开不尽的数,如 √7 ,3 √2等;

  有特定意义的数,如圆周率π,或化简后含有π的数,如π /?+8等;

  有特定结构的数,如0.1010010001…等;

  某些三角函数值,如sin60°等

  2、实数的倒数、相反数和绝对值

  ①相反数

  实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

  ②绝对值

  在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。|a|≥0。0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

  ③倒数

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。0没有倒数。

  ④数轴

  规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

  解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

  ⑤估算

  3、平方根、算数平方根和立方根

  ①算术平方根

  一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。

  性质:正数和零的算术平方根都只有一个,0的算术平方根是0。

  ②平方根

  一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

  性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

  开平方求一个数a的平方根的运算,叫做开平方。注意 √a的双重非负性:√a≥0 ; a≥0

  ③立方根

  一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a 的'立方根(或三次方根)。

  表示方法:记作 3 √a

  性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

  注意:- 3 √a=3 √-a,这说明三次根号内的负号可以移到根号外面。

  4、实数大小的比较

  ①实数比较大小

  正数大于零,负数小于零,正数大于一切负数;

  数轴上的两个点所表示的数,右边的总比左边的大;

  两个负数,绝对值大的反而小。

  ②实数大小比较的几种常用方法

  数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

  求差比较:设a、b是实数 a-b>0a>b; a-b=0a=b; a-b<0a<b 。

  求商比较法:设a、b是两正实数,

  绝对值比较法:设a、b是两负实数,则∣a∣>∣b∣a<b。

  平方法:设a、b是两负实数,则 a2>b2a<b 。

  5、算术平方根有关计算(二次根式)

  ①含有二次根号“ √ ”;被开方数a必须是非负数。

  ②性质:

  ③运算结果若含有“ √ ”形式,必须满足:

  被开方数的因数是整数,因式是整式

  被开方数中不含能开得尽方的因数或因式

  6、实数的运算

  ①六种运算:加、减、乘、除、乘方 、开方。

  ②实数的运算顺序

  先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

  ③运算律

  加法交换律 a+b= b+a

  加法结合律 (a+b)+c= a+( b+c )

  乘法交换律 ab= ba

  乘法结合律 (ab)c = a( bc )

  乘法对加法的分配律 a( b+c )=ab+ac

【八年级数学上册知识点】上海花千坊相关的文章:

数学八年级上册知识点12-07

数学八年级上册十三章知识点11-17

八年级上册人教版数学知识点03-19

数学八年级上册知识点15篇01-23

八年级上册重要的数学知识点12-02

八年级上册数学知识点03-15

八年级上册数学实数知识点归纳01-19

八年级数学上册分式知识点01-18

八年级上册数学知识点提纲11-16

八年级数学上册知识点大全02-25