上海花千坊

数学

数学中考知识点

时间:2022-02-17 16:36:02 数学 我要投稿

数学中考知识点15篇

  在平凡的学习生活中,看到知识点,都是先收藏再说吧!知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。你知道哪些知识点是真正对我们有帮助的吗?以下是小编精心整理的数学中考知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。

数学中考知识点15篇

数学中考知识点1

  重点①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。

  ☆ 内容提要☆

  一、圆的基本性质

  1.圆的定义(两种)

  2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

  3.“三点定圆”定理

  4.垂径定理及其推论

  5.“等对等”定理及其推论

  5. 与圆有关的角:⑴圆心角定义(等对等定理)

  ⑵圆周角定义(圆周角定理,与圆心角的关系)

  ⑶弦切角定义(弦切角定理)

  二、直线和圆的位置关系

  1.三种位置及判定与性质:

  2.切线的性质(重点)

  3.切线的判定定理(重点)。圆的切线的判定有⑴…⑵…

  4.切线长定理

  三、圆换圆的位置关系

  1.五种位置关系及判定与性质:(重点:相切)

  2.相切(交)两圆连心线的性质定理

  3.两圆的公切线:⑴定义⑵性质

  四、与圆有关的比例线段

  1.相交弦定理

  2.切割线定理

  五、与和正多边形

  1.圆的内接、外切多边形(三角形、四边形)

  2.三角形的外接圆、内切圆及性质

  3.圆的外切四边形、内接四边形的性质

  4.正多边形及计算

  中心角:

  内角的一半: (右图)

  (解Rt△OAM可求出相关元素, 、 等)

  六、 一组计算公式

  1.圆周长公式

  2.圆面积公式

  3.扇形面积公式

  4.弧长公式

  5.弓形面积的计算方法

  6.圆柱、圆锥的侧面展开图及相关计算

  七、 点的轨迹

  六条基本轨迹

  八、 有关作图

  1.作三角形的外接圆、内切圆

  2.平分已知弧

  3.作已知两线段的比例中项

  4.等分圆周:4、8;6、3等分

  九、 基本图形

  十、 重要辅助线

  1.作半径

  2.见弦往往作弦心距

  3.见直径往往作直径上的圆周角

  4.切点圆心莫忘连

  5.两圆相切公切线(连心线)

  6.两圆相交公共弦

数学中考知识点2

  分类的原则:

  (1)分类中的每一部分是相互独立的;

  (2)一次分类按一个标准;

  (3)分类讨论应逐级有序进行。以探寻直角坐标系中等腰直角三角形存在的问题来说,如果给定两个点A、B,需要在X轴上找第三个点C使得这个三角形ABC是等腰直角三角形,这个时候同学们可以线段来分类讨论:AB为斜边时,AC为斜边或时BC为斜边时点C的坐标。这样讨论保证不会丢掉任何一种可能性,并且效率较高。当然也可以按照角来讨论,但是注意不要两种分类方法穿插进行。有些时候有可能会进行二次讨论,这个时候对于同学们的条理性要求就更大了,例如探讨含有30°角的直角三角形时,要先讨论那个角是直角,在讨论哪个角是30°或60°。

  第三、在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的,最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。同样有些时候也需要注意是否有些讨论结果重复,需要进行合并。例如直角坐标系中求能够成等腰三角形的点坐标,如果按照一定的原则分类讨论后,有可能会出现同一个点上可以构成两个等腰三角形的情况,这种情况下就要进行合并。也就是说找到的三角形的个数和点的个数是不一样的。

  以下几点是需要大家注意分类讨论的

  1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。

  2、讨论点的位置,一定要看清点所在的范围,是在直线上,还是在射线或者线段上。

  3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。

  4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。

  5、考查点的取值情况或范围。这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。

  6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。

  7、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。

  由于考试题目千变万化,上面所列的项目不一定全面,所以还需要同学们在平时做题的时候多多积累。

数学中考知识点3

  ⑴垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

  逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

  ⑵有关圆周角和圆心角的性质和定理

  ① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

  ②一条弧所对的圆周角等于它所对的圆心角的一半。

  直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

  圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)

  即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

  ③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

  ⑶有关外接圆和内切圆的性质和定理

  ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;

  ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

  ③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)

  ④两相切圆的连心线过切点(连心线:两个圆心相连的直线)

  ⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

  (4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。

  (5)弦切角的度数等于它所夹的弧的度数的一半。

  (6)圆内角的度数等于这个角所对的弧的度数之和的一半。

  (7)圆外角的度数等于这个角所截两段弧的度数之差的一半。

  (8)周长相等,圆面积比长方形、正方形、三角形的面积大。

数学中考知识点4

  一、 重要概念

  1。数的分类及概念

  数系表:

  说明:“分类”的原则:1)相称(不重、不漏)

  2)有标准

  2。非负数:正实数与零的统称。(表为:x≥0)

  常见的非负数有:

  性质:若干个非负数的和为0,则每个非负担数均为0。

  3。倒数: ①定义及表示法

  ②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a1时,1/a1;D。积为1。

  4。相反数: ①定义及表示法

  ②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C。和为0,商为-1。

  5。数轴:①定义(“三要素”)

  ②作用:A。直观地比较实数的大小;B。明确体现绝对值意义;C。建立点与实数的一一对应关系。

  6。奇数、偶数、质数、合数(正整数—自然数)

  定义及表示:

  奇数:2n-1

  偶数:2n(n为自然数)

  7。绝对值:①定义(两种):

  代数定义:

  几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

  ②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

数学中考知识点5

  正棱锥是棱锥的一种,具备着所有棱锥的性质和定理。

  正棱锥

  如果一个棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。

  正棱锥的性质

  (1)正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高);

  (2)正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形;

  (3)正棱锥的侧棱与底面所成的角都相等;正棱锥的侧面与底面所成的二面角都相等;

  (4)正棱锥的侧面积:如果正棱锥的底面周长为c,斜高为h’,那么它的侧面积是 s=1/2ch‘。

  特别地,侧棱与底面边长相等的正三棱锥叫做正四面体。

数学中考知识点6

  科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好20xx中考复习工作全面迎接20xx中考,下文为各位考生准备了20xx中考数学易错知识点的内容。

  数学方面

  失分点集中在以下几个方面:

  考查简单二次根式的化简求值,函数中自变量取值范围,易出错。

  考查点和圆、直线和圆的位置关系,易将其判定相混,或不审题误把圆直径当半径。

  考查简单直角三角形的应用,失分点在于对括号中给出精确度忽略而错选。视图时,考生由于缺乏空间想象力而易失分。

  考查一元二次方程的实际应用,特别是均变速运动有关问题是难点。

  以图表形式提供信息考查统计知识,由于信息量及阅读量大,线索多,要求小伙伴们冷静、细心审题,否则易失分。

  考查几何变换中点的坐标及点或线段在变换中经过的路线,考生容易在三个方面失分,旋转中的旋转方向,坐标与线段转化过程中忽略点所在位置或者是弧长公式、扇形面积公式相混。

  考查概率在实际问题中应用,用频率估分概率时考生容易出错。

  策略:从往年的试卷可以看出,小伙伴们卷面上一般会出现大量“会而不对”、“对而不全”的现象。

  小伙伴们应注意以下三个问题:

  解题速度慢,导致后面的解答题没有时间做,连看题都没有时间了。解题速度缓慢原因就是不熟练,基础知识不熟练,基本方法不熟练,这是平时训练不够所致,所以我们经常说回归课本,目的就是要让考生全面、系统地掌握课本中的基础知识和基本方法,吃透课本中的例题和习题。

  运算错误多。答卷的时候,经常会犯一些低级的错误,这是运算能力的问题,不能简单的说是粗心大意,这方面要加强运算能力的训练,避免基础性失分。

  答题不规范。一道题做完了,自己以为是对的,其实大打折扣,主要是因为答题不规范,丢三落四。例如解应用题没有作答,求函数解析式没有写出定义域(自变量取值范围),乱用数学符号、乱造数学符号等。

  因此小伙伴们在最后几天,要注意回归教材,认真通读课本,结合考试说明的能力要点,及时查漏补缺,把知识方法系统化,针对调考后训练中出现的错误,失分点,进一步总结错因,杜绝隐患。调整心态及作息时间,以适应数学20xx中考安排。

数学中考知识点7

  考点1:确定事件和随机事件

  考核要求:

  〔 1〕理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;

  〔 2〕能区分简单生活事件中的必然事件、不可能事件、随机事件。

  考点2:事件发生的可能性大小,事件的概率

  考核要求:

  〔 1〕知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;

  〔 2〕知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;

  〔3〕理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

  〔1〕在给可能性的大小排序前可先用〝一定发生〞、〝很有可能发生〞、 〝可能发生〞、〝不太可能发生〞、〝一定不会发生〞等词语来表述事件发生的可能性的大小;

  〔 2〕事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

  考点3:等可能试验中事件的概率问题及概率计算

  考核要求

  〔1〕理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;

  〔2〕会用枚举法或画〝树形图〞方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;

  〔3〕形成对概率的初步认识,了解机会与风险、规那么公平性与决策合理性等简单概率问题。

  〔1〕计算前要先确定是否为可能事件;

  〔2〕用枚举法或画〝树形图〞方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

  考点4:数据整理与统计图表

  考核要求:

  〔1〕知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;

  〔2〕结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

  考点5:统计的含义

  考核要求:

  〔1〕知道统计的意义和一般研究过程;

  〔2〕认识个体、总体和样本的区别,了解样本估计总体的思想方法。

  考点6:平均数、加权平均数的概念和计算

  考核要求:

  〔1〕理解平均数、加权平均数的概念;

  〔2〕掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

  考点7:中位数、众数、方差、标准差的概念和计算

  考核要求:

  〔 1〕知道中位数、众数、方差、标准差的概念;

  〔 2〕会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

  〔1〕当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;

  〔2〕求中位数之前必须先将数据排序。

  考点8:频数、频率的意义,画频数分布直方图和频率分布直方图考核要求:

  〔 1〕理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;

  〔2〕会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。

  考点9:中位数、众数、方差、标准差、频数、频率的应用考核要求:

  〔1〕了解基本统计量〔平均数、众数、中位数、方差、标准差、频数、频率〕的意计算及其应用,并掌握其概念和计算方法;

  〔2〕正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;

  〔3〕能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,

  要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

  单靠〝死〞记还不行,还得〝活〞用,姑且称之为〝先死后活〞吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到〝一石多鸟〞的效果。研究解决有关的实际生活中问题,然后作出合理的解决。

  一般说来,〝教师〞概念之形成经历了十分漫长的历史。杨士勋〔唐初学者,四门博士〕 ?春秋谷梁传疏?曰:〝师者教人以不及,故谓师为师资也〞。

  这儿的〝师资〞,其实就是先秦而后历代对教师的别称之一。

  韩非子也有云:“今有不才之子?…师长教之弗为变〃其“师长〃当然也指教师。这儿的〝师资〞和〝师长〞可称为〝教师〞概念的雏形,但仍说不上是名副其实的〝教师〞,因为〝教师〞必须要有明确的传授知识的对象和本身明确的职责。

数学中考知识点8

  三角形的重心

  已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。

  证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。

  重心的几条性质:

  1.重心和三角形3个顶点组成的3个三角形面积相等。

  2.重心到三角形3个顶点距离的平方和最小。

  3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3

  4.重心到顶点的距离与重心到对边中点的距离之比为2:1。

  5.重心是三角形内到三边距离之积最大的点。

  如果用塞瓦定理证,则极易证三条中线交于一点。

数学中考知识点9

  1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算。

  小数除法的计算方法:

  计算除数是整数的小数除法,按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0,点上小数点,继续除;如果有余数,要添0再除。

  计算除数是小数的除法,先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算。

  2、取近似数的方法:

  取近似数的方法有三种,①四舍五入法 ②进一法 ③去尾法

  一般情况下,按要求取近似数时用四舍五入法,进一法、去尾法在解决实际问题的时候选择应用。

  取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。没有要求时,除不尽的一般保留两位小数。

  3、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。

  4、循环小数的表示方法:

  一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0.3636…… 1.587587……

  另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12.

  5、有限小数:小数部分的位数是有限的小数,叫做有限小数。

  6、无限小数:小数部分的位数是无限的小数,叫做无限小数。

数学中考知识点10

  1.解直角三角形

  1.1.锐角三角函数

  锐角a的正弦、余弦和正切统称∠a的三角函数。

  如果∠a是Rt△ABC的一个锐角,则有

  1.2.锐角三角函数的计算

  1.3.解直角三角形

  在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。

  2.直线与圆的位置关系

  2.1.直线与圆的位置关系

  当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。

  直线与圆的位置关系有以下定理:

  直线与圆相切的判定定理:

  经过半径的外端并且垂直这条半径的直线是圆的切线。

  圆的切线性质:

  经过切点的半径垂直于圆的切线。

  2.2.切线长定理

  从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。

  切线长定理:过圆外一点所作的圆的两条切线长相等。

  2.3.三角形的内切圆

  与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形的三条角平分线的交点。

  3.三视图与表面展开图

  3.1.投影

  物体在光线的照射下,在某个平面内形成的影子叫做投影。光线叫做投影线,投影所在的平面叫做投影面。由平行的投射线所形成的投射叫做平行投影。

  可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。

  3.2.简单几何体的三视图

  物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。

  主视图、左视图和俯视图合称三视图。

  产生主视图的投影线方向也叫做主视方向。

  3.3.由三视图描述几何体

  三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。

  3.4.简单几何体的表面展开图

  将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。

  圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆。AD旋转所成的面就是圆柱的侧面,AD不论转动到哪个位置,都是圆柱的母线。

  圆锥可以看做将一根直角三角形ACB绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体。直角边BC旋转所成的面就是圆锥的底面,斜边AB旋转所成的面就是圆锥的侧面,斜边AB不论转动到哪个位置,都叫做圆锥的母线。

数学中考知识点11

  1、必须熟悉各种基本题型并掌握其解法。

  课本上的每一道练习题,都是针对一个知识点出的,是最基本的题目,必须熟练掌握;课外的习题,也有许多基本题型,其运用方法较多,针对性也强,应该能够迅速做出。

  许多综合题只是若干个基本题的有机结合,基本题掌握了,不愁解不了它们。

  2、在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。

  数学是思维的世界,有着众多思维的技巧,所以每道题在命题、解题过程中,都会反映出一定的思维方法,如果我们有意识地注重这些思维方法,时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时在解这一类的题目时就易如反掌了;同时,掌

  握了更多的思维方法,为做综合题奠定了一定的基础。

  3、多做综合题。

  综合题,由于用到的知识点较多,颇受命题人青睐。

  做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。

数学中考知识点12

  第三轮复习(2-3周)

  1、第三轮复习的形式:“模拟训练,查缺补漏”

  目的:突破中考分数的非知识角度的障碍

  ①研究历年中考真题,选择含金量高的模拟题

  分析历年中考题,对考点的掌握做到心中有数。选择梯度设计合理,立足中考又稍高于中考难度的模拟题来做。

  ②调整自己的心里状态

  考试的成绩绝不仅仅取决于对知识点的掌握,在真正的考场上,心理状态和心里素质会带来很大的影响,所以在模拟训练时,一定要严格按照真正中考的时间以及相关要求来训练。

  2、第三轮复习应注意的问题

  (1)通过做模拟题进行查缺补漏

  中考大纲要求掌握的知识点可谓众多,在经过前两轮的复习后,最后需要用做模拟题的方式来检查是否有遗漏生疏的知识点。

  (2)克服不良的考试习惯

  中考考题都有相应的判分规则,要按照判分规则去优化答题思路和步骤,必须避免因为“审题不仔细,凭印象答题以及答题不规范”等原因造成的失分。

  (3)总结适当的应试技巧

  在实际的考试过程中,完成一道题目并不一定非要按照从知识点的应用角度出发。针对不少典型题,都有相应的解题技巧,既节约了做题时间,还保证了结果正确。

数学中考知识点13

  20xx年中考数学知识点:有理数

  一、正数和负数

  正数和负数的概念

  负数:比0小的数;正数:比0大的数。

  0既不是正数,也不是负数

  ☆注意:字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。强调:带正号的数不一定是正数,带负号的数不一定是负数。

  具有相反意义的量

  若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量。习惯把“前进、上升、收入、零上温度”等规定为正,“后退、下降、支出、零下温度”等规定为负.

  二、有理数

  有理数的概念

  (1)正整数、0、负整数统称为整数(0和正整数统称为自然数)

  (2)正分数和负分数统称为分数

  (3)整数和分数统称有理数

  ☆注意:①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。

  数轴

  (1)数轴的概念:规定了原点,正方向,单位长度的直线叫做数轴。

  注意:数轴是一条向两端无限延伸的直线;

  原点、正方向、单位长度是数轴的三要素,三者缺一不可;

  数轴的三要素都是根据实际需要规定的,同一数轴上的单位长度要统一;

  (2)数轴上的点与有理数的关系

  所有的有理数都可以用数轴上唯一的点来表示,正有理数可用原点正方向的点表示,负有理数可用原点负方向的点表示,0用原点表示。

  相反数

  (1)只有符号不同的两个数叫做互为相反数;0的相反数是0;任何一个有理数都有相反数

  (2)互为相反数的两数的和为0,即:若a、b互为相反数,则a+b=0;互为相反数的两个点在数轴上分别位于原点两侧,并且与原点的距离相等。

  (3)在一个数的前面加上负号“-”,就得到了这个数的相反数。a的相反数是-a。

  (4)多重符号的化简

  多重符号的'化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。

  绝对值

  (1)绝对值的几何定义:数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:|a|

  (2)求绝对值:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数;可用字母表示为:①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

  可归纳为①:a≥0时,|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)②a≤0时,|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)

  (3)若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)

  有理数比大小

  (1)利用数轴表示两数大小

  在以向右为正方向的数轴上数的大小比较,右边的数总比左边的数大;

  正数都大于0,负数都小于0,正数大于负数;

  (2)数轴上特殊的最大(小)数

  最小的自然数是0,无最大的自然数;

  最小的正整数是1,无最大的正整数;

  最大的负整数是-1,无最小的负整数

  (3)利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;

  (4)大数-小数>0,小数-大数<0。

  三、有理数的加、减法运算

  有理数加法

  (1)同号两数相加,取相同符号,并且把绝对值相加

  (2)异号两数相加,取绝对值大的数的符号,并且用较大的绝对值减去较小的绝对值

  (3)互为相反数的两数相加得0

  ☆

  加法交换律:两个有理数相加,交换加数的位置,和不变,a+b=b+a

  加法结合律:三个有理数相加,先把前两个数相加,再把结果与第三个数相加;或者先把后两个数相加,再把结果与第一个数相加,和不变,(a+b)+c=a+(b+c)

  ☆

  (1)同号结合相加(正数+正数、负数+负数)

  (2)互为相反数的两数结合相加(把相加结果为零的数结合相加)

  (3)几个分数相加,将同分母的先结合相加

  (4)将求和后为整数的数先结合相加

  (5)几个带分数相加,可将整数部分与分数部分分别结合相加

  ☆在一个求和的式子中,通常可以把“+”省略不写,同时去掉加数的括号

  有理数的减法

  根据相反数的定义,减去一个数,等于加上这个数的相反数,有理数的减法可以转化为加法进行计算。引入相反数的之后,有理数的加减混合运算可以统一为加法运算。

  四、有理数的乘、除法运算

  有理数乘法

  (1)异号两数相乘得负数,并把绝对值相乘;同号两数相乘得正数,并把绝对值相乘。

  (2)任何数与0相乘都得0

  ☆有理数的乘法运算定律

  乘法交换律:两个有理数相乘,交换因数的位置,它们的积不变。a×b=b×a

  乘法结合律:三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。a×b×c=a×(b×c)

  乘法分配律:两个数的和(差)同一个数相乘,可以先把两个加数(减数)分别同这个数相乘,再把两个积相加(减),积不变。a×(b+c)=a×b+a×c

  倒数

  (1)乘积为1的两个数互为倒数;注意:0没有倒数;

  (2)若a,b互为倒数,则ab=1;

  (3)求倒数:求一个数的倒数就是用1去除以这个数。

  ①求假分数或真分数的倒数,只要把这个分数的分子、分母颠倒位置即可;

  ②求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;

  ③正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不改变这个数的性质);

  ④倒数等于它本身的数是1或-1;

  有理数除法

  (1)除以一个不等0的数,等于乘以这个数的倒数。

  (2)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0

  有理数的加减乘除混合运算

  (1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

  (2)有理数的加减乘除混合运算,如果有括号先计算括号里的,如果无括则按照‘先乘除,后加减’的顺序进行,同级运算中,按前后顺序从左到右依次运算,谁在前先算谁。

  五、有理数乘方

  乘方的概念:求n个相同因数的乘积的运算,叫做乘方,乘方的结果叫做幂。乘方中,相同的因式叫做底数,相同因式的个数叫做指数。

  记作:an,在an中,a叫做底数,n叫做指数,an叫做幂

  乘方的性质

  (1)负数的奇次幂是负数,负数的偶次幂的正数。

  (2)正数的任何次幂都是正数,0的任何正整数次幂都是0。

  (3)互为相反数的两个数的奇数次幂仍互为相反数,偶数次幂相等。

  (4)任何一个数的偶数次幂都是非负数。

  有理数的混合运算

  做有理数的混合运算时,应注意以下运算顺序:

  (1)先乘方,再乘除,最后加减;

  (2)同级运算中,按前后顺序从左到右依次运算,谁在前先算谁。

  (3)如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

  科学记数法

  把一个绝对值大于10的数记成a×10n的形式,其中a是整数数位只有一位的数(即1≤|a|<10,n是正整数),这种记数法叫科学记数法。

  方法:①a的确定:把原数的小数点向左移动,使它的整数位数为1,数的正负号保持不变;②n=原数的整数数位-1。

数学中考知识点14

  同位角知识:两条直线a,b被第三条直线c所截会出现“三线八角”。

  同位角的特征识别:

  1.在截线的同旁;

  2.在被截两直线的同方向;

  3.同位角截取图呈“F”型。

  平行线的性质与判定

  平行线的性质:两直线平行,同位角相等。

  知识归纳:平行线的判定:同位角相等,两直线平行。

数学中考知识点15

  数轴特点:一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

  数轴上点与有理数关系:每一个有理数都可以用数轴上的一个点来表示;

  但数轴上的点不都表示有理数。

  注意:不能出现相同长度表示的不等的量。数轴两端不能画点。

【数学中考知识点15篇】上海花千坊相关的文章:

数学中考的知识点01-25

数学中考的知识点11-22

数学中考知识点集锦11-02

中考数学知识点10-31

数学中考知识点汇总10-26

中考数学知识点【圆】02-08

中考数学知识点:圆11-13

中考数学知识点总结05-27

中考数学最热的知识点11-19

中考数学知识点归纳10-30