上海花千坊

数学

小学数学知识点

时间:2022-03-10 16:35:43 数学 我要投稿

小学数学知识点(汇编15篇)

  在平日的学习中,大家都没少背知识点吧?知识点有时候特指教科书上或考试的知识。相信很多人都在为知识点发愁,以下是小编精心整理的小学数学知识点,希望能够帮助到大家。

小学数学知识点(汇编15篇)

小学数学知识点1

  第一课时:什么是周长

  【知识点】:

  1、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。

  2、学生在动手操作中,可以画出并能计算出图形的周长。

  第二课时 游园

  【知识点】:

  1、为学生创设游园的情境,引导学生体验用不同的方法去计算小公园的周长。就是把围成小公园的所有线段加在一起。

  2、算一算中出现了4种不同的图形,鼓励学生用多种方法计算,为后面学习长方形、正方形周长的计算作好铺垫。

  第三课时 花边有多长

  【知识点】:

  1、学生要明确已知的条件和问题,然后先独立思考,再在小组中交流自己的想法,鼓励学生用不同的方法来解决问题,从而发现(长+宽)﹡2是求长方形周长最简便的方法。不必用公式化的算式去约束学生,他们可以自己喜欢的方法去计算。

  2、在做一做中出现的两个不同的长方形可以让学生用自己喜欢的方法求周长。

  第四课时 地砖的周长

  【知识点】:

  1、学生要明确已知条件和问题,利用学习长方形周长的知识经验,知识迁移到怎样求出正方形的周长,就是把正方形的四条边长加起来,还可以用边长乘4。

  2、做一做中出现的两个正方形周长的计算,可以放手让学生用自己喜欢的方法去解决。

  3、练一练中的第2小题要让学生明确求篱笆长多少米,就是在求正方形实验园地的周长。

  第五课时 练习六

  【知识点】:

  1、练习六中的1——8小题通过计算各种图形的不同周长,进一步巩固学生已经掌握的计算周长的方法。

  而第9小题则是让学生发现图形之间的变化关系,从而发现这四幅图形的周长是相等的。

  2、在实践活动中,可以让学生先计算三个周长的大小,并说出估计的过程或理由,然后再让学生自主选择测量工具和测量方式。可以独立测量,也可以是小组合作进行,最后组织学生对其估计和测量的结果进行对比,修正自己的估计和测量的结果。

  第六课时 交通与数

  【知识点】:

  在这节实践活动课中,要引导学生认真仔细的观察图片中的数学信息,从而运用周长、乘除法、搭配方法等数学知识和方法来解决实际生活中的简单问题。

小学数学知识点2

  简单方程

  代数式:用运算符号(加减乘除)连接起来的字母或者数字。

  方程:含有未知数的等式叫方程。

  列方程:把两个或几个相等的代数式用等号连起来。

  列方程关键问题:用两个以上的不同代数式表示同一个数。

  等式性质:等式两边同时加上或减去一个数,等式不变;等式两边同时乘以或除以一个数(除0),等式不变。

  移项:把数或式子改变符号后从方程等号的一边移到另一边;

  移项规则:先移加减,后变乘除;先去大括号,再去中括号,最后去小括号。

  加去括号规则:在只有加减运算的算式里,如果括号前面是+号,则添、去括号,括号里面的运算符号都不变;如果括号前面是-号,添、去括号,括号里面的运算符号都要改变;括号里面的数前没有+或-的,都按有+处理。

  移项关键问题:运用等式的性质,移项规则,加、去括号规则。

  乘法分配率:a(b+c)=ab+ac

  解方程步骤:①去分母;②去括号;③移项;④合并同类项;⑤求解;

  方程组:几个二元一次方程组成的一组方程。

  解方程组的步骤:①消元;②按一元一次方程步骤。

  消元的方法:①加减消元;②代入消元。

  小学数学基础运算公式

  1、每份数份数=总数总数每份数=份数总数份数=每份数

  2、1倍数倍数=几倍数几倍数1倍数=倍数几倍数倍数=1倍数

  3、速度时间=路程路程速度=时间路程时间=速度

  4、单价数量=总价总价单价=数量总价数量=单价

  5、工作效率工作时间=工作总量工作总量工作效率=工作时间工作总量工作时间=工作效率

  6、加数+加数=和和-一个加数=另一个加数

  7、被减数-减数=差被减数-差=减数差+减数=被减数

  8、因数因数=积积一个因数=另一个因数

  9、被除数除数=商被除数商=除数商除数=被除数

小学数学知识点3

  一、6—10的认识:

  1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。

  2、10以内数的顺序:

  (1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。

  (2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。

  3、比较大小:按照数的顺序,后面的数总是比前面的数大。

  4、序数含义:用来表示物体的次序,即第几个。

  5、数的组成:一个数(0、1除外)可以由两个比它小的数组成。如:10由9和1组成。

  记忆数的组成时,可由一组数想到调换位置的另一组。

  二、6—10的加减法

  1、10以内加减法的计算方法:根据数的组成来计算。

  2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。

  3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。

  三、连加连减

  1、连加的计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。

  2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。

  四、加减混合

  加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。

  数学的学习思维方法

  1比较法

  通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

  比较法要注意:

  (1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

  (2)找联系与区别,这是比较的实质。

  (3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

  (4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

  (5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

  2公式法

  运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是孩子学习数学必须学会和掌握的一种方法。但一定要让孩子对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

  3逻辑法

  逻辑是一切思考的基础。逻辑思维,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。

  4逆向思维法

  逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。

  5分类法

  根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

  分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

  数学里的项是什么

  若干个单项式的和组成的式叫做多项式。多项式中每个单项式叫做多项式的项。任意个字母和数字的积的形式的代数式是单项式。每个单项式上不含字母的项叫常数项。

小学数学知识点4

  人教版小学数学知识点大全 基本概念

  第一章 数和数的运算 一、概念 (一)整数

  1、整数的意义

  自然数和0都是整数。

  2、自然数

  我们在数物体的时候,用来表示物体个数的1,2,3??叫做自然数。

  一个物体也没有,用0表示。0也是自然数。

  3、计数单位

  一(个)、十、百、千、万、十万、百万、千万、亿??都是计数单位。其中“一”是计数的基本单位。

  10个1是10,10个10是100??每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

  4、数位

  计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

  5、整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

  6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

  7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

  ? 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。

  ? 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。? 四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。这种求近似数的方法就叫做四舍五入法。

  8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。以此类推。 (二)小数

  1、小数的意义

  把整数1平均分成10份、100份、1000份?? 得到的十分之几、百分之几、千分之几?? 可以用小数表示。如1/10记作0.1,7/100记作0.07。

  一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几??

  一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

  小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)??小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。如0.36是两位小数,3.066是三位小数

  在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

  2、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

  3、小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

  4、比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大??

  5、小数的分类

  ? 纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。

  ? 带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。

  ? 有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。

  ? 无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 ?? 3.1415926 ??

  ? 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏

  ? 循环小数:一个数的'小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 ?? 0.0333 ?? 12.109109 ??

  一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ??的循环节是“ 9 ” , 0.5454 ??的循环节是“ 54 ” 。

  ? 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 ?? 0.5656 ??

  ? 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 ?? 0.03333 ??

  写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有一个数字,就只在它的上面点一个点。 (三)分数

  1、分数的意义

  把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

  在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

  把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

  2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

  3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

  4、比较分数的大小:

  ? 分母相同的分数,分子大的那个分数就大。

  ? 分子相同的分数,分母小的那个分数就大。

  ? 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。

  ? 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。

  5、分数的分类

  按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数

  ? 真分数:分子比分母小的分数叫做真分数。真分数小于1。

  ? 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

  ? 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

  6、分数和除法的关系及分数的基本性质

  ? 除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。? 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。

  ? 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。

  7、约分和通分

  ? 分子、分母是互质数的分数,叫做最简分数。

  ? 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。

  ? 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

  ? 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

  ? 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

  8、倒 数

  ? 乘积是1的两个数互为倒数。

  ? 求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

  ? 1的倒数是1,0没有倒数 (四)百分数

  1、百分数的意义

  表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

  2、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

  3、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

  4、百分数与折数、成数的互化:

  例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0%,则六成五就是65%。

  5、纳税和利息:

  税率:应纳税额与各种收入的比率。

  利率:利息与本金的百分率。由银行规定按年或按月计算。

  利息的计算公式:利息=本金×利率×时间

  6、百分数与分数的区别主要有以下三点:

  ? 意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。如:可以说 1米 是 5米 的 20%,不可以说“一段绳子长为20%米。”因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数不仅 可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕 米等。

  ? 应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。

  ? 书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分 数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。

  7、数的互化

  ? 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

  ? 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

  ? 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

  ? 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

  ? 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  ? 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

  ? 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。 (五)数的整除

  1、整除的意义

  整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

  除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。

  2、约数和倍数

  ? 如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就(来自:WWw.SmhaiDa.com :小学数学总结)叫做a的约数(或a的因数)。倍数和约数是相互依存的。

  ? 一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

  ? 一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

  3、奇数和偶数

  ? 自然数按能否被2 整除的特征可分为奇数和偶数。

  ① 能被2整除的数叫做偶数。0也是偶数。

  ② 不能被2整除的数叫做奇数。

  ? 奇数和偶数的运算性质:

  ① 相邻两个自然数之和是奇数,之积是偶数。

  ② 奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,

  奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。

  4、整除的特征

  ? 个位上是0、2、4、6、8的数,都能被2整除。

  ? 个位上是0或5的数,都能被5整除。

  ? 一个数的各位上的数的和能被3整除,这个数就能被3整除。

  ? 一个数各位数上的和能被9整除,这个数就能被9整除。

  ? 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

  ? 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

  ? 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

  5、质数和合数

  ? 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

  ? 一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

  ? 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

  6、分解质因数

  ? 质因数

  每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

  ? 分解质因数

  把一个合数用质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

  ? 公因(约)数

  几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。

  公因数只有1的两个数,叫做互质数。成互质关系的两个数,有下列几种情况:①和任何自然数互质;

  ②相邻的两个自然数互质;

  ③当合数不是质数的倍数时,这个合数和这个质数互质;

  ④两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

  如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

  如果两个数是互质数,它们的最大公约数就是1。

  ? 公倍数

  ① 几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍数。

  求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。

  ② 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

  求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

  如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

  如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

  几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。 二、性质和规律 (一)商不变的规律

  商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。 (二)小数的性质

  小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。 (三)小数点位置的移动引起小数大小的变化

  1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍??

  2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍??

  3、小数点向左移或者向右移位数不够时,要用“0"补足位。 (四)分数的基本性质

  分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。 (五)分数与除法的关系

  1、被除数÷除数= 被除数/除数

  2、因为零不能作除数,所以分数的分母不能为零。

  3、被除数 相当于分子,除数相当于分母。 三、运算法则 (一)整数四则运算的法则

  1、整数加法:

  把两个数合并成一个数的运算叫做加法。

  在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。

  加数+加数=和一个加数=和-另一个加数

  2、整数减法:

  已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

  在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。

  加法和减法互为逆运算。

  3、整数乘法:

  求几个相同加数的和的简便运算叫做乘法。

  在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。

  在乘法里,0和任何数相乘都得0.1和任何数相乘都的任何数。

  一个因数× 一个因数 =积一个因数=积÷另一个因数

  4、整数除法:

  已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

  在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

  乘法和除法互为逆运算。

  在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

  被除数÷除数=商 除数=被除数÷商 被除数=商×除数

  5、乘方:

  求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32 (二)小数四则运算

  1、小数加法:

  小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。

小学数学知识点5

  1.长度单位:长度单位是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。

  其国际单位是“米”(m),常用单位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。长度单位在各个领域都有重要的作用。

  米:国际单位制中长度的标准单位是“米”,用符号“m”表示。

  分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。

  厘米:长度单位,简写符号为:cm。

  毫米:英文缩写为mm

  (1厘米=10毫米=0.1分米=0.01米=0.00001千米)

  2.进位:加法运算中,每一数位上的数等于基数时向前一位数进一。

  以个位向十位进位为例:基数为10(2进制的基数是2,类推),个位这个数位上的数量达到了10的情况下,则个位向前一位进1,成为一个十。

  在十进制的算法中,个位满十,在十位中加1;十位满十,在百位中加一。

  3.不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。

  4.退位减:减法运算中必须向高位借位的减法运算。例:51-22=39

  1不能够减去2,所以必须向高位的5借位。

  5.连加:多个数字连续相加叫做连加。例如:28+24+23=85

  6.连减:多个数字连续相减叫做连减。例如:85-40-26=19

  7.加减混合:在运算中既有加法又有减法的运算。例如:67-25+28=70

  苏教版小学数学学习方法

  学习数学方法一:课前预习:

  一个老生常谈的话题,也是提到学习方法必将的一个,话虽老,虽旧,但仍然是不得不提。虽然大家都明白该这样做,但是真正能够做到课前预习的能有几人,课前预习可以使我们提前了解将要学习的知识,不至于到课上手足无措,加深我们听课时的理解,从而能够很快的吸收新知识。

  学习数学方法二:课后复习:

  同预习一样,是个老生常谈的话题,但也是行之有效的方法,课堂的几十分钟不足以使我们学习和消化所学知识,需要我们在课下进行大量的练习与巩固,才能真正掌握所学知识。

  学习数学方法三:涉猎课外习题:

  想要在数学中有所建树,取得好成绩,光靠课本上的知识是远远不够的,因此我们需要多多涉猎一些课外习题,学习它们的解题思路和方法,如果实在不能理解,可以问问老师或者同学。

  学习数学方法四:记笔记:

  这里主要指的是课堂笔记,因为每节课的时间有限,所以老师将的东西一般都是精华部分,因此很有必要把它们记录下来,一来可以加深我们的理解,好记性不如烂笔头吗,二来可以方便我们以后复习查看。如果对课堂讲述的知识不理解的同学更应该做笔记,以便课下细细琢磨,直到理解为止。

  苏教版小学数学学习技巧

  列表记忆

  就是把某些容易混淆的识记材料列成表格,达到记忆之目的。这种方法具有明显性、直观性和对比性。比如,要识记质数、质因数、互质数这三

  重点记忆

  随着年龄的增长,所学的数学知识也越来越多,学生要想全面记住,既浪费时间且记忆效果不佳。因此,要让学生学会记忆重点内容,学生在记住了重点内容的基础上,再通过推导、联想等方法便可记住其他内容了。比如,学习常见的数量关系:工作效率×工作时间=工作量。工作量÷工作效率=工作时间;工作量+工作时间=工作效率。这三者关系中只要记住了第一个数量关系,后面两个数量关系就可根据乘法和除法的关系推导出来。这样去记,减轻了学生记忆的负担,提高了记忆的效率。

小学数学知识点6

  准备课

  1、数一数

  数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。

  2、比多少

  同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。

  比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。

  比较两种物体的多或少时,可以用一一对应的方法。

  位置

  1、认识上、下

  体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。

  2、认识前、后

  体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。

  同一物体,相对于不同的参照物,前后位置关系也会发生变化。

  从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。

  3、认识左、右

  以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。

  要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。

  学好数学的方法和技巧总结

  主动预习

  预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

  因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

  让数学课学与练结合

  在数学课上,光听是没用的。自己也要在草稿纸上练。当遇到不懂的难题时,一定要提出来,不能不懂装懂,否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题。应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。

  单项式书写格式

  1、数字写在字母的前面,应省略乘。[5a]、[16xy]等。

  2、π是常数,因此也可以作为系数。它不是未知数。

  3、若系数是带分数,要化成假分数。

  4、当一个单项式的系数是1或—1时,“1”通常省略不写,如[(—1)ab]写成[—ab]等。

  5、在单项式中字母不可以做分母,分子可以。

  6、单独的数“0”的系数是零,次数也是零。

  7、常数的系数是它本身,次数为零。

  8、如果是分数的多项式,那么他的系数就是他的分数常数,次数为最高次幂。

小学数学知识点7

  一、百分数的意义:

  表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。

  注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。

  1、百分数和分数的区别和联系:

  (1)联系:都可以用来表示两个量的倍比关系。

  (2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。

  注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。

  2、小数、分数、百分数之间的互化

  (1)百分数化小数:小数点向左移动两位,去掉“%”。

  (2)小数化百分数:小数点向右移动两位,添上“%”。

  (3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。

  (4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

  (5)小数化分数:把小数成分母是10、100、1000等的分数再化简。

  (6)分数化小数:分子除以分母。

  二、百分数应用题

  1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。

  2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

  求甲比乙多百分之几:(甲-乙)÷乙

  求乙比甲少百分之几:(甲-乙)÷甲

  3、求一个数的百分之几是多少。一个数(单位“1”)×百分率

  4、已知一个数的百分之几是多少,求这个数。

  部分量÷百分率=一个数(单位“1”)

  5、折扣、打折的意义:几折就是十分之几也就是百分之几十

  折扣、成数=几分之几、百分之几、小数

  八折=八成=十分之八=百分之八十=0.8

  八五折=八成五=十分之八点五=百分之八十五=0.85

  五折=五成=十分之五=百分之五十=0.5=半价

  6、利率

  (1)存入银行的钱叫做本金。

  (2)取款时银行多支付的钱叫做利息。

  (3)利息与本金的比值叫做利率。

  利息=本金×利率×时间

  税后利息=利息-利息的应纳税额=利息-利息×5%

  注:国债和教育储蓄的利息不纳税

  7、百分数应用题型分类

  (1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几

  (2)求甲比乙多百分之几——(甲-乙)÷乙×100%

  (3)求甲比乙少百分之几——(乙-甲)÷乙×100%

  数学分数的加减法知识点

  1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。

  2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。

  3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

  小学数学必背关系表达式

  1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

  2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

  3、速度×时间=路程路程÷速度=时间路程÷时间=速度

  4、单价×数量=总价总价÷单价=数量总价÷数量=单价

  5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

  6、加数+加数=和和-一个加数=另一个加数

  7、被减数-减数=差被减数-差=减数差+减数=被减数

  8、因数×因数=积积÷一个因数=另一个因数

  9、被除数÷除数=商被除数÷商=除数商×除数=被除数

小学数学知识点8

  1、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。

  2、百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。

  3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。

  4、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。百分数化成小数:把小数点向左移动两位,同时去掉百分号。

  5、百分数化成分数:先把百分数化成分数(把百分数改写成分母是整100、整1000……的分数),能约分要约成最简分数。分数化成百分数:先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

  6、常见的百分率的计算方法:

  ①合格率=合格产品数÷总数×100% ②发芽率=发芽数÷总数×100%

  ③出勤率=出勤人数÷总数×100% ④达标率=达标人数÷总数×100%

  ⑤成活率=成活数÷总数×100% ⑥出粉率=出粉总量÷总总量×100%

  7、一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。

  8、求一个数的百分之几是多少用乘法:已知数×几%。

  9、求比一个数多百分之几的数是多少:已知数×(1+几%);求比一个数少百分之几的数是多少:已知数×(1-几%);

  10、求一个数是另一个数的百分之几用除法:一个数÷另一个数

  11、求一个数比另一个数多百分之几:(大数-小数)÷小数;求一个数比另一个数少百分之几:(大数-小数)÷大数。

  12、已知比一个数多百分之几是多少求这个数:已知数÷(1+几%);已知比一个数少百分之几是多少求这个数:已知数÷(1-几%)

  13、已知单位“1”的量用乘法,求单位“1”的量用除法。

小学数学知识点9

  小学数学表内乘法知识点

  1、求几个相同加数的和,用乘法表示更加简便。求几个相同加数的和的简便运算叫做乘法。

  2、加法和乘法的改写,如:5+5+5+5写成乘法算式:5×4或4×5 ;反之,乘法也可改写成加法。如:8×4=8+8+8+8 (在忘记乘法口诀或口诀记不准时,可把乘法算式改写成加法算式来计算。)加法写成乘法时,加法的和与乘法的积相同。

  3、2×7=14读作:2乘7等于14;3乘4等于12写作:3×4=12。

  4、乘法算式中,两个乘数(因数)交换位置,积不变。如:8×4=4×8

  5、看图,写乘加、乘减算式时:

  乘加:先把相同的部分用乘法表示,再加上不相同的部分。先算相同再加不同。乘减:先把每一份数都当作相同的数来算,写成乘法,再把多算进去的数减去。如:加法:5+5+5+5+3=23乘加:5×4+3=23乘减:5×5-3=23

  6、“求几个几相加的和是多少”和“求一个数的几倍是多少”用乘法计算,如:7的3倍是多少?(7×3=21),5个8相加的和是多少?(8×5=40)

  练习:

  1、5个6相加写作乘法算式是( )或( )。

  2、先看图,再填空★★★ ★★★ ★★★ ★★★

  (1)求一共有多少个的加法算式是:____ ;

  (2)求一共有多少个的乘法算式是:________;

  (3)第二行画△是4个3:

  第一行:○○○第二行:

  在8×6=48中,8和6都叫做( ),48叫做( )。

  先把乘法口诀填完整,再写出两个相应的乘法算式。

  (1)( )八二十四(乘法口诀要大写)

  (2)七( )六十三(乘法算式要小写)

  3、根据算式写出乘法口诀。8×7( ) 6×9( )

  4、5+5+5+4=( )或( ) 8+8+8+8-7=( )或( )

  小学数学四大领域主要内容

  数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;

  图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;

  统计与概率:收集、整理和描述数据,处理数据;

  实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验长度单位换算:

  小学数学单位换算

  1千米=1000米。

  1米=10分米。

  1分米=10厘米。

  1米=100厘米。

  1厘米=10毫米。的重要途径。

小学数学知识点10

  1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。

  2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。

  3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

  4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1时)

  1时=60分

  1分=60秒

  时间的两种标准写法:

  8时零5分:8:05

  8时55分:8:55

  注:当两个表中时针表示的时间相同时,后面的时间减去前面的时间即可得到经过的时间。

  练习题

  1、一节数学课上了40()。

  小红上午在校时间约4()。

  2、小芳跳绳20下用了15()。

  课间休息10()。

  3、小明吃饭用了20()。

  小明做20道口算题用了2()。

  4、爸爸每天工作约8()。

  王艳跑50米用了10()。

  5、南京乘火车去上海用了5()。

  晚间新闻联播时间大约是30()。

  参考答案:

  1、一节数学课上了40(分钟)。

  小红上午在校时间约4(小时)。

  2、小芳跳绳20下用了15(秒)。课间休息10(分钟)。

  3、小明吃饭用了20(分钟)。

  小明做20道口算题用了2(分钟)。

  4、爸爸每天工作约8(小时)。

  王艳跑50米用了10(秒)。

  5、南京乘火车去上海用了5(小时)。

  晚间新闻联播时间大约是30(分钟)。

  圆的周长

  环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。多边形的周长的长度也相等于图形所有边的和,圆的周长=πd=2πr(d为直径,r为半径,π),扇形的周长=2R+nπR÷180?(n=圆心角角度)=2R+kR(k=弧度)。

  推导圆周长最简洁的办法是用积分。在平面直角坐标下圆的方程是这可以写成参数方程:于是圆周长就是结果自然就是(注:三角函数一般的定义是依赖于圆的周长或面积的,为了避免逻辑上的循环论证,可以把三角函数按收敛的幂级数或积分来定义而不依赖于几何,此时圆周率就不是由圆定义的常数,而是由三角函数周期性得到的常数)。如果不需要更多的理论讨论,上面的做法就足够了。

  自然数分类

  可分为质数、合数、1和0。

  1、质数:只有1和它本身这两个因数的自然数叫做质数。也称作素数。

  2、合数:除了1和它本身还有其它的因数的自然数叫做合数。

  3、1:只有1个因数。它既不是质数也不是合数。

  4、当然0不能计算因数,和1一样,也不是质数也不是合数。

小学数学知识点11

  1.理解比例的意义和基本性质,会解比例。

  2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

  3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

  4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

  5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

  6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

  7.比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:

  8.组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

  9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。

  10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

  求比例中的未知项,叫做解比例。

  例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

  11.正比例和反比例:

  (1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)

  例如:

  ①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

  ②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

  ③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

  ④y=5x,y和x成正比例,因为:y÷x=5(一定)。

  ⑤每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。

  (2)成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

  用字母表示x×y=k(一定)

  例如:①、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。

  ②总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。

  ③长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。

  ④40÷x=y,x和y成反比例,因为:x×y=40(一定)。

  ⑤煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。

  12.图上距离:实际距离=比例尺;

  例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:200000。

  13.实际距离=图上距离÷比例尺;

  例如:已知图上距离2cm和比例尺,则实际距离为:2÷1/200000=400000cm=4km。

  14.图上距离=实际距离×比例尺;

  例如:已知实际距离4km和比例尺1:200000,则图上距离为:400000×1/200000=2(cm)

小学数学知识点12

  1.认识人民币的单位元、角、分和它们的十进关系,认识各种面值的人民币,能看懂物品的单价,会进行简单的计算。

  2.结合自己的生活经验和已经掌握的100以内数的知识,学习、认识人民币,一方面初步知道人民币的基本知识和懂得如何使用人民币,提高社会实践能力;另一方面加深对100以内数的概念的理解。

  3.体会数概念与现实生活的密切联系。

  4.认识各种面值的人民币,并会进行简单的计算。

  5.使学生认识人民币的单位元、角、分,知道1元=10角,1角=10分。

  6.通过购物活动,使学生初步体会人民币在社会生活、商品交换中的功能和作用并知道爱护人民币。

小学数学知识点13

  1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

  如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

  2、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

  3、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

  注意:如果被除数的位数不够,在被除数的末尾用0补足。

  4、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。

  5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。

  6、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

  循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232…………的循环节是32.

  7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限

小学数学知识点14

  1、用竖式计算两位数加法时:

  ①要把相同数位对齐。

  ②从个位加起。

  ③如果个位满10,向十位进1。

  2、用竖式计算两位数减法时:

  ①要把相同数位对齐。

  ②从个位减起。

  ③如果个位不够减,从十位退1和个位组成两位数再减,计算十位时要记得减去退掉的1。

  3、加减混合运算:

  ①按从左往右的顺序计算

  ②有小括号的,先算小括号里的,用分步式计算。

  4、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算,如70比25多多少?19比46少多少?

  5、多几的问题。未知数比谁多几,就用谁加上几。如:比29多17的数是多少?(29+17=46)

  错位数相加法

  比如,个位加十位得数是个位的;

  51+15=66;这样算:5+1得6;1+5得6;两6合拼

  72+27=99;这样算:7+2得9;2+7得9;两9合拼

  63+36=99;这样算:6+3得9;3+6得9;两9合拼

  52+25=77;这样算:5+2得7;2+5得7;两7合拼

  学数学新课标的基本理念

  1.义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。

  2.数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。

  3.学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

小学数学知识点15

  一 图形的变换

  轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形, 这条直线叫做对称轴。(正方形,长方形,三角形,平行四边形,圆)

  旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

  旋转的性质:图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;其中对应点到旋转中心的距离相等;旋转前后图形的大小和形状没有改变;两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;旋转中心是唯一不动的点。

  知识点连接:平移、轴对称、旋转的区别联系

  二 因数和倍数

  1、整除:被除数、除数和商都是自然数,并且没有余数。

  大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

  找因数的方法:

  一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

  一个数的倍数的个数是无限的,最小的倍数是它本身。

  因数与倍数是相对存在,不能脱离开来:2是4的因数,4是2的倍数

  因数与倍数指的通常是整数,不能针对小数。2.4×5=12,所以5是12的因数(×)

  2、自然数按能不能被2整除来分:奇数 偶数

  奇数:不能被2整除的数

  偶数:能被2整除的数。

  最小的奇数是1,最小的偶数是0.

  个位上是0,2,4,6,8的数都是2的倍数。

  个位上是0或5的数,是5的倍数。

  一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。

  3、自然数按因数的个数来分:质数、合数、1.

  质数:有且只有两个因数,1和它本身

  合数:至少有三个因数,1、它本身、别的因数

  1: 只有1个因数。“1”既不是质数,也不是合数。

  最小的质数是2,最小的合数是4。

  20以内的质数:有8个(2、3、5、7、11、13、17、19)

  4、分解质因数

  用短除法分解质因数 (一个合数写成几个质数相乘的形式)

  5、公因数、最大公因数

  几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。

  用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来)

  几个数的公因数只有1,就说这几个数互质。

  两数互质的特殊情况:

  ⑴1和任何自然数互质;⑵相邻两个自然数互质; ⑶两个质数一定互质;

  ⑷2和所有奇数互质; ⑸质数与比它小的合数互质;

  如果两数是倍数关系时,那么较小的数就是它们的最大公因数。

  如果两数互质时,那么1就是它们的最大公因数。

  0、1、2、3、4

  6、公倍数、最小公倍数

  几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

  用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

  用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)

  如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。

  如果两数互质时,那么它们的积就是它们的最小公倍数。

  1. 跑圈问题

  2. 公交问题

  3.最大公因数

  三 长方体和正方体

  【概念】

  1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。在一个长方体中,相对面完全相同,相对的棱长度相等。

  2、两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

  3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的长度都相等,所有的面都完全相同。

  4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

  5、长方体有6个面,8个顶点,112条棱,相对的面的面积相等,相对的棱的长度相等。一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。

  长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4

  长=棱长总和÷4-宽 -高 a=L÷4-b-h

  宽=棱长总和÷4-长 -高 b=L÷4-a-h

  高=棱长总和÷4-长 -宽 h=L÷4-a-b

  正方体的棱长总和=棱长×12 L=a×12

  正方体的棱长=棱长总和÷12 a=L÷12

  6、长方体或正方体6个面和总面积叫做它的表面积。

  长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

  无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2

  S=2(ab+ah+bh)-ab S=2(ah+bh)+ab

  无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)

  正方体的表面积=棱长×棱长×6 S=a×a×6

  6、物体所占空间的大小叫做物体的体积。

  长方体的体积=长×宽×高 V=abh

  长=体积÷宽÷高 a=V÷b÷h

  宽=体积÷长÷高 b=V÷a÷h

  高=体积÷长÷宽 h= V÷a÷b

  正方体的体积=棱长×棱长×棱长 V=a×a×a

  7、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

  常用的容积单位有升和毫升也可以写成L和ml。

  1升=1立方分米 1毫升=1立方厘米 1升=1000毫升

  8、a3读作“a的立方”表示3个a相乘,(即a·a·a)

【小学数学知识点(汇编15篇)】上海花千坊相关的文章:

小学数学必备知识点12-07

小学数学广角知识点10-18

小学数学知识点整理02-22

小学数学所需知识点12-07

小学数学进位加法知识点12-07

小学数学混合运算知识点10-18

小学数学分类知识点10-16

小学数学知识点(15篇)01-24

新人教版小学数学知识点11-18

小学数学读数写数知识点11-18