上海花千坊

考研资讯

考研数学冲刺考前需要回顾的考点

时间:2021-06-10 15:32:14 考研资讯 我要投稿
  • 相关推荐

考研数学冲刺考前需要回顾的考点

   随着考研数学冲刺阶段的到来,我们需要在考前好好回顾一些重要的考点。小编为大家精心准备了研数学冲刺考前的知识点,欢迎大家前来阅读。

考研数学冲刺考前需要回顾的考点

  考研数学冲刺考前的重点

   1.几个易混概念:连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。

   2.罗尔定理:设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得f‘(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,①f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线;②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)表明曲线的割线(直线AB)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f’(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。

   3.泰勒公式展开的应用专题:我以前,以及我所有的同学,看到泰勒公式就哆嗦,因为咋一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实在我搞明白一下几点后,原来的症状就没有了。第一:什么情况下要进行泰勒展开;第二:以哪一点为中心进行展开;第三:把谁展开;第四:展开到几阶?

   4.应用多次中值定理的专题:大部分的考研题,一般要考察你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映老师出这题考哪几个中值定理,我的敏感性是靠自己多练习综合题培养出来的。我会经常会去复习,那样我对中值定理的题目早已没有那种刚学高数时的害怕之极。要想对微分中值定理这块的题目有条理的掌握,看我这个总结定会事半功倍的。

   5.对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用:这几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知识,但是往往不是那么容易就靠做3,4个题目就能了解这知识点的应用到底有多广泛。我们做积分题,尤其多重积分和线面积分,死算也许能算出结果,但是要是能用以上性质,那可真是三下五除二搞定,这方面的感觉相信大家有过,可是或许仅仅是昙花一现,因为你做出来了以为以后就一定会在相似的题目中用,其实不然,因为仅仅靠几道题目很大程度上不能给你留下太深刻的印象,下次轮到的时候或许就是考场上了,你可能顿时苦思冥想,最终还是选择了最傻的办法,浪费了宝贵时间。说这些其实就是说明,考场上的正常或超常发挥是建立在平时踏实做,见识广,严要求的基础上。

  考研高数考点预测:极限的计算

   1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。

   2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的`极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。

   3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。

   4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!

   5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数,可能只需要知道它的范围结果就出来了!

   6、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

  7、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)。

   8、各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。

   9、求左右极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,因为极限去掉有限项目极限值不变化。

   10、两个重要极限的应用。这两个很重要!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大,无穷小都有对有对应的形式(第2个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用地两个重要极限)

   11、还有个方法,非常方便的方法,就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的!x的x次方快于x!快于指数函数,快于幂数函数,快于对数函数(画图也能看出速率的快慢)!!当x趋近无穷的时候,他们的比值的极限一眼就能看出来了。

  12、换元法是一种技巧,不会对单一道题目而言就只需要换元,而是换元会夹杂其中。

  13、假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。

   14、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法,走投无路的时候可以考虑转化为定积分。一般是从0到1的形式。

  15、单调有界的性质,对付递推数列时候使用证明单调性!

   16、直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减某个值)加减f(x)的形式,看见了要特别注意)(当题目中告诉你F(0)=0时候f(0)导数=0的时候,就是暗示你一定要用导数定义!

  函数是表皮,函数的性质也体现在积分微分中。例如他的奇偶性质他的周期性。还有复合函数的性质:

  1、奇偶性,奇函数关于原点对称偶函数关于轴对称偶函数左右2边的图形一样(奇函数相加为0);

  2、周期性也可用在导数中在定积分中也有应用定积分中的函数是周期函数积分的周期和他的一致;

  3、复合函数之间是自变量与应变量互换的关系;

   4、还有个单调性。(再求0点的时候可能用到这个性质!(可以导的函数的单调性和他的导数正负相关):o再就是总结一下间断点的问题(应为一般函数都是连续的所以间断点是对于间断函数而言的)间断点分为第一类和第二类剪断点。第一类是左右极限都存在的(左右极限存在但是不等跳跃的的间断点或者左右极限存在相等但是不等于函数在这点的值可取的间断点;第二类间断点是震荡间断点或者是无穷极端点(这也说明极限即使不存在也有可能是有界的)。

  考研数学备考的建议

  一、重视基础

   考研数学主要考察的就是考生对基本概念、基本理论和基本方法的掌握程度,所以复习的时候仍然是以基础为主,熟练地掌握一些基本的解题方法、概念、性质。

  二、正确解读大纲

   《全国硕士研究生入学统一考试数学考试大纲》是每位考生在复习数学时必须了解的一份十分重要的资料。只有准确把握大纲的内容,才能更清楚地明确复习方向、复习重点,从而制订合理的复习规划,获得更好的考试成绩。大纲中的考试要求版块,对考试内容作了进一步细化,列出不同的概念、性质、理论和计算方法在考试中的不同要求。

   对于概念和理论(包括部分性质),有两种不同的要求:一种是理解,另一种是了解。如果是要求“理解”的知识点,说明考试对这部分的概念和理论要求往往是比较高的,不仅要求考生对基本概念理解透彻,而且还要前后融会贯通,灵活运用;如果是要求“了解”的知识点,则要求相对来说就低一些,但是这并不意味着不考,只是要求的比较低,仅仅需要大家简单地记住公式或者结论性质即可。

  同样,对于计算方法(包括部分性质的使用),也有两个层面的要求:一种是掌握,另一种是会用。

   对于要求“掌握”的知识点,要求考生达到的程度是:首先,正确使用该种计算方法,其次,还得做到灵活运用该方法,包括掌握某些方法中的技巧点;如使用的是“会用,会求”这些字眼,则对此类计算要求相对低一些,掌握一些基本的算法即可。

  三、研究历年真题

   仔细研究历年真题有一个很大的特点,比如你做十年真题,做完后你会有一个感觉,至少考研题目出题的规律和特点能够基本把握住了,在做真题的过程中,通过真题能够把握住考研的高频考点和低频考点,不管是横向还是纵向做比较,对于考研题目的特点、出题方式,宏观上至少有一个把握。

  四、勤动笔

   考研数学这门课程,是靠笔杆子才能打下来的一片江山。强调勤练习,多动笔,这样才能把别人的思路、方法彻底转化为自己的方法,从而考场上才能得心应手答好题目。另外,自己亲自动笔去做一些题目,也可以有效地避免某些考生眼高手低的做题态度,而且还可以提高自己的计算能力。考研数学试题计算量还是偏大的,有的考生考试时想到了解题方法,但由于平时不注重练习,速度跟不上,时间不够用,终失分,岂不是很可惜?


【考研数学冲刺考前需要回顾的考点】上海花千坊相关的文章:

考研数学冲刺考前需要复习的考点12-18

考研数学概率统计冲刺的考点12-11

考研数学冲刺阶段的重要考点12-05

考研数学考前冲刺的注意事项12-20

考研数学冲刺需要重视的问题12-15

考研数学最后冲刺各科的重要考点12-18

考研数学线代冲刺的历年考点12-12

考研数学三需要掌握的重要考点09-06

考研数学考前冲刺要掌握的复习策略12-26