- 相关推荐
最新的《乘法分配律》教学反思14篇
在办理事务和工作生活中,我们要在教学中快速成长,反思意为自我反省。那么优秀的反思是什么样的呢?以下是小编整理的最新的《乘法分配律》教学反思,仅供参考,希望能够帮助到大家。
最新的《乘法分配律》教学反思 1
本节课主要让学生充分感知并归纳乘法分配律,理解其意义。教学中,我从解决实际问题(买衣服)引入,通过交流两种解法,把两个算式写成一个等式,并找出它们的联系。让学生初步感知乘法分配律的基础上再让学生举出几组类似的算式,通过计算得出等式。在充分感知的基础上引导学生比较这几组等式,发现有什么规律?
这里我化了一些时间,我发现学生在用语言文字叙述方面有些困难,新教材上也没有要求,因此,只要学生意思说到即可,后来,我提了这样一个问题,你能用自己喜欢的方式来表示你发现的规律吗?学生立即活跃起来,纷纷用自己喜欢的方式来阐明自己发现的规律:有用字母的.,有用符号的,大部分学生会说,没问题。对于应用这一乘法分配律进行后面的练习还可以。如:书上第55页的第5题,学生都想到用简便方法去列式计算。整节课,学生还是学的比较轻松的。
最新的《乘法分配律》教学反思 2
关于乘法分配律早在上学期和本册教材的前几个单元的练习题中就有所渗透,虽然在当时没有揭示,但学生已经从乘法的意义角度初步进行了感知,以及初步体会了它可以使计算简便。今天的教学就建立在这样的基础之上,上午第一节课我在自己班上,后来第二节课去听了一根木头老师的课,现在进行对比,谈一谈自己的感受:
首先,值得向一根木头老师学习的是,学生的预习工作很到位。课前,学生就已经解决了“想想做做”第3、4题,学生通过解决第三题用两种方法求长方形的'周长,既巩固了旧知,而且将原来的认识提升了,从解决实际问题的角度进一步感受了乘法分配律。而第4题通过计算比较,突现了乘法分配律可以使计算简便,体现了应用价值。我在课前没有安排这样的预习,因此课上的时间比较仓促。
其次,我在学生解决完例题的问题后,还让学生提了减法的问题,这样做的目的是让学生初步感受对于(a-b)×c=a×b-a×c这种类型的题也同样适合,既扩展了学生的知识面,同时又为明天学习简便运算铺垫。
最后,我觉得在指导学生在观察比较65×5+45×5和(65+45)×5的联系和区别时,可以指导学生从数和运算符号两个角度观察,学生得出结论后,其实已经感知到了算式的特点,然后让学生用自己的方式创造相同类型的等式,可以是数、字母、图形的等,值得欣慰的是学生能用各种方式正确表示出来,然后再揭示数学语言,学生的认知产生飞跃。
不足的是,学生很难用自己的语言表达乘法分配律的含义,小组交流时,有些同写还是充当旁观者的角色,有待于教师科学地引导。
最新的《乘法分配律》教学反思 3
《乘法分配律》是一节比较抽象的概念课,是学生们学习了加法交换律和结合律,以及乘法的交换律和结合律的基础上进行教学的。本节课的教学重点是乘法分配律的特点和应用。开始导入我是利用小学教学热身赛展开的.教学。9×37+9×63和9×(37+63)。左右两排学生做不同的题,让学生认识到这两道题难易程度的不同,用的时间也是不同的,体现了用括号的必要性和简便性,通过学生总结说特点引导他们猜想,然后对猜想进行验证,得出结论,并应用到实际中,培养学生们学以致用的好习惯。
上周去滨州听课,学到了“猜测-举例验证-总结-应用”的教学模式,充分体现了新课标的探究性学习,并在本课教学中得到了很好的利用,不完全归纳法,也在本课中用所应用。但是在引入时应该让学生们把这两个算式的特点和联系理解透彻了,学生们会很快的猜想出这条规律,整节课讲速度有些慢,导致了几个经典的练习题没有处理,创设情境激发学生的求知欲来导入新课,会收到更好的效果。
(80+4)×25=80×25+4×25此题的处理,我感到比较欣慰。当发现学生们(80+4)×25=80×25+4时,我灵机一动在黑板上写下了这个错误的算式,让和我做的一样的同学举手,大约有5、6个同学高兴地举起手,还有一个同学得意地说“刚才我还以为做错了呢?”看到这种情景我接着说:“不举手的同学你们想说点什么吗?”此句话给了这些没有举手的同学的信心,他们迫不及待地说出了正确的解法。这道题学生们非常容易做错,这样的处理会使学生加深印象,提高做题的准确率。
最新的《乘法分配律》教学反思 4
乘法分配律是四年级学习的重点,也是难点之一。它是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的,是一节比较抽象的概念课,教学是我根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。
一、在对本节课的教学目标上,我定位在:
(1)通过学生比赛列式计算解决情景问题后,观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。
(2)初步感受乘法分配律能使一些计算简便。
(3)培养学生分析、推理、概括的思维能力。
二、结合自己所教案例,对本节课教学策略进行以下几点简要分析:
1、总体上我的教学思路是由具体——抽象——具体。
在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。
2、从学生已有知识出发。
教师要深入了解各层次学生思维实际,提供充分的信息,为各层次学生参与探索学习活动创造条件,没有学生主体的主动参与,不会有学生主体的主动发展,教师若不了解学生实际,一下子把学习目标定得很高,势必会造成部分学生高不可攀而坐等观望,失去信心浪费宝贵的学习时间。以往教学该课时都是以计算引入,有复习旧知,也有比一比谁的计算能力强开场。我想是不是可以抛开计算,带着愉快的心情进课堂,因此,我在一开始设计了一个植树的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。这样所设的'起点较低,学生比较容易接受。
3、鼓励学生大胆猜想。
猜想是科学发现的前奏。学生的学习活动中同样不能没有猜想,否则,主体性探究 活动便缺少了内在的动力,自主学习的过程也成了失去目标的无意义操作。学生看到加法交换律和加法结合律,从直观上产生了关于乘法运算定律的猜想。于是,接下来的举例就成了验证猜想的必需,无论猜想的结论是“是”还是“非”,学生的思维一直是活跃着的,对学生都是有意义的。这个过程是教会学生 学习与掌握探索方法的过程,是培养学生学习品格的过程。
4、师生平等交流。
教学过程是师生共创共生的过程,新课程确定的培养目标和所倡导的学习方式要求 教师必须转换角色。改变已有的教学行为,教师必须从“师道尊严”的架子中走出来,与学生平等地参与教学,成为共同建构学习的参与者。在以上教学片断中,教 师让学生充分经历学习过程,调动学生学习的热情:猜想——倾听——举例——验证,在 欣赏学生的“闪光”处给学生“点拨”。教师没有过多的讲授,也没有花大量的时间去 刻意的创设教学情境,只是做唤醒学生主体意识的工作,引导学生大胆猜想,大胆表达。学生借助已有的知识经验,自主解决新问题,使学生的主体地位得以体现。
5、将学生放在主体位置。
把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去尝试解决问题。在探究这一系列的等式有什么共同点的活动中,学生涌现出的各种说法,说明学生的智力潜能是巨大的。所以我在这里花了较多的时间,让学生多说,谈谈各自不同的看法,说说自己的新发现,教师尽可能少说,为的就是要还给学生自由探索的时间和空间,从而能使学生的主动性、自主性和创造性得到充分的发挥。
三、教学中的不足和改进之处:
在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等,今后的工作中,要多向以下几个方面努力:
1、多听课,多学习。尤其是优秀教师的课,学习他们的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。
2、加强同科组教师之间的沟通和交流,相互学习,取长补短,共同进步。
3、认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数,游刃有余。
最新的《乘法分配律》教学反思 5
乘法分配律是学生较难理解和叙述的定律,比起乘法交换率和乘法结合率男掌握的多。因此在本节课教学设计上,我结合新课标的一些基本理念和学生的具体情况,注重从实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习新知识。
《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。”数学教育家波利亚曾经说过:“数学教师的首要责任是尽其一切可能,来发展学生解决问题的能力。”而我们过去的教学往往比较重视解决书上的数学问题,学生一旦遇到实际问题就束手无策。因此,上课一开始,我创造性地使用教材,创设了一个肯德基餐厅用餐的情境,使学生置身于非常熟悉的生活情境中,极大地激发了学生的学习欲望。学生很快地按要求用两种不同的方法列出算式,并且能够轻而易举地证明两式相等。接着要求学生通过观察这个等式看看能否发现什么规律。在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。这样既培养了学生的猜想能力,又培养了学生验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的'发挥。
同时,我还注重学生的合作与交流,多向互动。倡导课堂教学的动态生成是新课程标准的重要理念。在数学学习中,每个学生的思维方式、智力、活动水平都是不一样的。因此,为了让不同的学生在数学学习中得到不同的发展,我在本课教学中立足通过生生、师生之间多向互动,特别是通过学生之间的互相启发与补充来培养他们的合作意识,实现对“乘法分配律”的主动建构。学生在这样一个开放的环境中博采众长,共同经历猜想、验证、归纳知识的形成过程,共同体验成功的快乐。既培养了学生的问题意识,又拓宽了学生思维能力,学生也学得积极主动。
应用规律,解决实际问题是数学学习的目的所在。在练习题型的设计上,有抢答(填空)题、判断题、连线题、简算题和拓展题,它们并不孤立,而是有机地联系在一起,由基本题到变式题,由一般题到综合题,有一定的梯度和广度。使学生逐步加深认识,在弄清算理的基础上,学生能根据题目的特点,灵活地运用所学知识进行简便运算和拓展练习。不仅要求学生会顺向应用乘法分配律,而且还要求学生会反向应用。通过正反应用的练习,加深学生对乘法分配律的理解。从课堂反馈来看,学生热情较高,能够学以致用,知识掌握的牢固。学生通过自己的努力以及和同学的交流合作,解题速度和准确性都很理想。
本节课有一定的亮点,但其中出现了不少问题:学生参与的积极性没有预想中那么高。可能与我相对缺乏激励性语言有关。也有可能今天的题材学生不太感兴趣。以后注意,学生不感兴趣的材料,教师应该想办法使呈现的这个材料变得能让学生感兴趣。另外,在回答问题时,个别学生的语言不够流利、准确。对乘法分配律的叙述稍显罗嗦,不够坚定、自信。在这方面有待今后加强训练和提高。
最新的《乘法分配律》教学反思 6
首先结合学生熟悉的问题情境,帮助学生体会运算定律的现实背景。接着设计“悬念”,抛出四组题目,把学生引到“两算式的结果相等”的情况中来。先请学生猜想,而后验证,再请学生编题,让每一个学生都不由自主地参与到研究中来。在编题过程中,很多学生都交出了正确的“答卷”,增强了他们学习的自信心和继续研究的欲望。接着,请同学在生活中寻找验证的.方法,以四人小组为研究单位,学生的思维活动一下子活跃起来,纷纷探究其中的奥秘。小组讨论的方式,更促使学生之间进行思维交流,激发学生希望获得成功的动机。通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得快乐,自己动手编题、自己动脑探索,从数量关系变化的多次类比中悟出规律,“扶”得少,学生创造得多,学生学会的不仅仅是一条规律,更重要的是,学生学会了自主自动,学会了进行合作,学会了独立思考,学生学得轻松,学得主动。
通过这节课的教学我感受到:认真钻研教材,深入挖掘教材中的宝贵资源,会使教材的内涵更有广度和深度,也为培养和发展学生思维的灵活性,提供了更广阔的空间。
最新的《乘法分配律》教学反思 7
1、关注学生已有的知识经验
以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境——为树勋中心小学购买舞蹈服装。通过两种算式的比较,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。
2、提供自主探索的机会
一堂数学课可以有不同种教法,怎样教才能在数学活动中培养学生
的创新能力呢?我觉得,最重要的是保证学生的主体地位,提供自主探索的机会。在探索乘法运算律的过程中,提出的问题有易到难,层层递进,不仅为学生提供了自主探索的时间和空间,使学生经历乘法运算律的产生和形成过程,而且让学生发现其中的数学规律与奥秘,从而激发学生对数学深层次的热爱。
3、展示知识的发生过程,引导学生积极主动探究
现代教育观认为:课堂教学不只是知识的传授过程,更是学生的发展过程。从数学学科的特点看,学生所学的数学知识是前人思维的结果。学习这些知识,不是简单地吸收,而必须通过自己的思维,把前人的思维结果转化为自己的思维结果。教师的任务是引导和帮助学生去进行再创造,而不是把现成的结论灌输给学生。让学生在探索未知领域的过程中,付出与前人发现这些知识所曾经付出的大体相同的智力代价,从而有效地实现知识训练智力的价值。例如在“乘法分配律”教学中,我先让学生根据提供的问题,用不同的方法解决,从而发现(65+35)×12=65×12+35×12这个等式,让学生观察,初步感知“乘法分配律。然后照样子写出几组这样的等式,引导学生再观察,让学生说明自己
发现的规律、并用不同的方法来表示这个规律。这样学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成过程。不仅要让学生获得了数学基础知识和基本技能,而且让学生学习科学探究的方法,以培养学生主动探究、发现知识的能力。
4、让学生不断在“反思”中学习,“体验”中学习
建构主义强调,学习不是简单地让学习者占有别人的知识,而是学习者主动地建构自己的知识经验,形成自己的见解。在学习过程中学习者不仅要不断监视自己对知识的理解程度,判断自己的进展与目标的差距,采取各种增进和帮助思考的策略,而且还要不断地反思自己的学习过程。由于数学对象的抽象性、数学活动的探索性决定了小学生不可能一次性地直接把握数学活动的本质,必须要经过多次的反复思考、深入研究和自我调整才可能洞察数学活动的本质特征。就小学数学课堂教学而言,反思的内容主要有:对自己的思考过程进行反思,对解题思路、分析过程、运算过程、语言的'表述进行反思,对所涉及的数学思想方法反思等。
在数学活动中,当学生在探索过程中遇到障碍或出现错误时,教师可以提出一些针对性的、具有启发性的问题引导学生主动地反思探索过程;当数学活动结束后,要引导学生反思整个探索过程和所获得结论的合理性,以获得成功的体验。在“乘法分配律”教学中,我先向学生我先让学生根据提供的问题,用不同的方法解决,从而发现(65+35)×12=65×12+35×12这个等式,让学生观察,是让学生初步感知这个规律。同时也体现了教学的差异性,给没有发现规律的同学以再次发现的机会。然后照样子写出几组这样的等式,引导学生再观察,让学生说明自己发现的规律、并用不同的方法来表示这个规律,来加深学生的数学体验。又如,学习了“乘法分配律”后,教师可让学生反思:“乘法分配律”是怎样总结出来的?从中你受到了什么启发?什么知识与“乘法分配律”有联系?学了“乘法分配律”后有什么用?这样既丰富了学生的数学体验,又提高了学生的“反思”的意识和能力。
本课中注意引导了学生在数学活动中体验数学,在数学中感悟数学,实现了运算律的抽象化与外化运用的认知飞跃,同时也体验到了学习数学的乐趣。
最新的《乘法分配律》教学反思 8
乘法分配律是人教版数学第三单元的内容,它是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的.乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。
同时,学好乘法分配律是学生以后进行简便计算的重要基础,对提高学生的计算能力有着举足轻重的作用。但要做到让学生进行“探究、推理、自己总结规律”很难,因为上的是直播棵,为了突破难点,在备课时,我做足了功课,首先我从例题入手,把乘法分配律放在具体的情境中,结合学生已有的生活经验,学生发现解决问题策略很多,此题可以用两种方法解答:(1)(4+2)×25;(2)4×25+2×25,通过比较,学生知道了为什么:(4+2)×25=4×25+2×25,经历了知识探究的过程,讲完例题后,又让学生通过发语音、课堂连麦的形式让举了许多这样的例子,提高了学生学习的积极性,每个例子不仅可放在具体情境中,也可借助乘法的意义让学生进一步理解,从而得出什么是“乘法的分配律及它的应用”,课堂取得了很好的效果。
最新的《乘法分配律》教学反思 9
乘法分配律是继乘法交换律、乘法结合律之后的新的运算定律,在算术理论中又叫乘法对加法的分配性质,由于它不同于乘法交换律和结合律是单一的运算。
从某种程度上来说,其抽象程度要高一些,因此,对学生而言,难度偏大,是计算的一个难点。因为它不仅仅是的乘法运算,还涉及到加法运算。这节课刘老师教学目标定位准确,没有把目标定位局限于探索理解乘法分配律,而是又引导学生应用乘法分配律进行了简便计算,通过学生与学生之间的互相启发与补充,老师的及时点拨,实现对“乘法分配律”这一运算定律的主动建构。整节课的学习氛围轻松愉悦、学生思维活跃、教学效果非常好。基本完成教学任务。
刘老师对本课的教学设计很科学,思路清晰,发现问题——观察比较——举例验证——归纳规律——运用规律,让学生经历了从具体到抽象,再由抽象到具体的知识推理方法,这节课不仅教会了乘法分配律,更教会了学生一种数学思想和数学方法,这也正是新课标强调的对学生其中两基培养的体现。
一、让学生从生活实例去理解乘法分配律
一共25个小组参加植树活动,每组里8人负责挖坑和种树,4人负责抬水和浇树。重组教材,改变每组的人数,由(4+2)个25,变为(8+6)个25更能凸显出应用乘法分配律后带来的方便,也为乘法分配律的应用打下伏笔和基础。并且把“挖坑、种树”“抬水、浇树”更改为“挖坑和种树”“抬水和浇树”减少了文字对学生理解带来的困难。
通过引入解决问题让学生得到两个算式。先捉其意义,再突显其表现的形式。
如(4+2)×25其意义就是6个25与4×25+2×25所表示的也是4个25再加2个25也就是6个25,它们的表示意义一样。因此得数也一样故成等量关系。然后观察它们之们的形式变化特点,两个数的和乘以一个数可以写成两个积相加的形式,再捉住因数的特点进行分析。在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会
借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。这是生活中遇到过的,学生能够理解两个算式表达的意思,也能顺利地解决两个算式相等的问题。
二、突破乘法分配律的教学难点
让学生亲历规律探索形成过程。对于探索简洁分配律的过程价值,丝毫不低于知识的掌握价值。既然是“规律定律”,就是让学生亲历规律形成的科学过程设计中,不着痕迹的让学生不断观察、比较、猜想、验证,从而概括出乘法分配律,在探索、归纳过程中,渗透着从特殊到一般,又由一般到特殊的数学思想和方法。
相对于乘法运算中的其他规律而言,乘法分配律的结构是最复杂的,等式变
形的`能力是教学的难点。为了突破这个教学难点,从生活中的实际问题出发,开放引入的情境,一共25个小组参加植树活动,每组里人负责,人负责。一共有多少同学参加这次植树活动?
学生主动去设计、解决,调动学生的积极性。让学生根据自己的想法,选择自己喜欢的方案,开放给学生,发挥学生的主体性,通过去发现、猜想、质疑、感悟、调整、验证、完善,验证其内在的规律,从而概括出乘法分配律。让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中。
在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。
当然,对乘法分配律的意义还需做到更式形结合解释,那就更有利于模型的建立。
建议:在教学中不仅要注意乘法分配律的外形结构,更要注重其内涵。如两个算式为什么会相等?缺乏从乘法意义的角度进行理解。在理解这一概念时,尤其要抓住关键词“分别”加以分析,以此深化对数学模型的理解。否则,象38×99+38这样的形式,就会成为学生练习中的拦路虎。
最新的《乘法分配律》教学反思 10
乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解与叙述的定律,是一节比较抽象的概念课。我根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。
具体设计:先创设兔子吃萝卜的情景,调动学生的学习积极性。
通过买“老伯伯养了10只猴子,每只兔子早上吃4个萝卜,晚上要吃3只萝卜这些猴子一天共要吃掉多少个萝卜?”列出两种不同的式子,让学生通过观察两种不同的计算方法也得到了相同的结果,这两个算式也可用“=”连接。
然后让学生观察这两个等式的特点,仿造上面的等式填空。
(4+5)×25=(14+25)×5=(37+125)×8=。
再让学生观察这几组算式,等号左边的算式有什么相同点?等号右边的算式有什么相同点?等号左边算式中的两个加数与右边算式中的什么数有关系?左边算式中的一个因数与右边算式中的哪个数有关系?使之让学生从中感受了乘法分配律的模型。
从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。”用字母形式表示:(a+b)×c=a×c+b×c,他们确实能够体会到两个不同的算式具有相等的关系。
第一步:通过资料获取继续研究的信息。
虽然所得的信息很简单,只是几组具有相等关系的算式,但这是学生通过活动自己获取的,学生对于它们感到熟悉和亲切,用他们作为继续研究的对象,能够调动学生的参与意识。
第二步:观察算式,寻找规律。让学生通过讨论初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,我不急于告诉学生答案,而是让学生自己通过举例加以验证。这里既培养了学生的猜测能力,又培养了学生验证猜测的能力。
第三步:应用规律,解决实际问题。通过对于实际问题的.解决,进一步拓宽乘法分配律。这一阶段,既是学生巩固和扩大知识,又是吸收内化知识的阶段,同时还是开发学生创新思维的重要阶段。
本节课的可取之处:
1、为学生提供了充分的数学活动机会,把学生的活动定位在感悟和体验上,引导学生用数学思维方式去发现、去探索。
2、使学生在辨析与争论中,自然而然地完成猜测与验证,形成清晰的认识,在学生举例中使学生感到乘法分配律的一个重要因素,最后由特殊到一般总结字母公式。
3、将模仿式的学习变为探究式的学习。
4、在本课的练习设计上,能力求有针对性,有坡度,同时也注意知识的延伸。
本节课的不足之处:
1、习题在安排上在充分理解《乘法分配律》的基础上,可以再安排一些具有思考性的题目,如78×99+78=78×(99+1),为后面的简便运算作伏笔,这样教学效果会更好。
2、在数学术语上还得反复推敲,以达到准确无误。
3、本堂课中新的教学理念有所体现,但在具体的操作中还缺乏成熟的思考,对学生的积极性没有充分调动起来。
我会坚持不断学习理论知识,多听课多向前辈们请教,切实提高业务能力。
最新的《乘法分配律》教学反思 11
乘法的分配律学生在本册书中是接触过的。譬如第42页的应用题第7题,其中就渗透了乘法的分配律。在数学一课一练上也有过这种类似的形式。以前在讲的时候是从乘法的意义上来帮助学生理解。
一、抓住重点。让学生理解乘法分配律的意义。
教材按照得出两道算式,把两道算式写成等式,分析两道算式之间的联系,写出类似的几组算式。发现规律,用语言或其他方式交流规律,给出用字母式子表示的运算律。这样的安排,便于学生经历观察、分析、比较和根据的过程。能使学生在合作交流的过程中,对简洁分配律的认识由感性逐步上升到理性。教学用书上写道:教学的重点和关键应是引导学生自主发现规律,用语言或其他方式与同伴交流规律。
在教学时,我是按照如上的步骤进行教学的。可是在我引导学生把算式写成等式的时候让学生观察左右两边算式之间的联系与区别之后,学生就根本不知道从何下手。在他们的印象中,联系就是根据乘法的意义来进行联系。根本没有从数字上面去进行分析。可以说,局限在原先的思维中,而没有跳出来看。而让学生写出几组算式后,观察分析几组等式左右两边的区别之后,学生也还是无法用语言来表达这一规律。场面一时之间很冷,后来我只好直接让学生用字母来表示,变化为这样的形式之后,有很多的学生都能够写出来。
我不明白这是为什么,时间我给了,小组也交流了,在小组交流时我已经发现我们班上的学生根本无法发现其中的规律,所以也根本无法用语言来进行表达。难道是坡度给得不够吗?还是平时的教学中出现了问题。这些都要一一地去分析。
总之,这个关键今天并没有完成好。
二、考虑学生的学习情况,尊重他们的主观感受。
在引导学生把两道算式拼成一道等式之后,我让学生交流,结果学生给出了两种(65+45)×5=65×5+45×5。和65×5+45×5=(65+45)×5。我把这两种方式都板书上黑板上。教材上要求的是第一种,即把(65+45)×5写在等式的左边,是为了方便学生对乘法分配律的意义的理解。我认为,从乘法的意义这个角度上来说,意义的理解我们班级可以做到。既然是从意义出发,那么两种方式其实都是可以的。所以在用字母来表达时,我们班的同学也有了两种的表达方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。我都板书在黑板上,只是在规范的那一道上面画了个星,告诉学生,乘法分配律的表示一般性采用的是这一条。
三、练习中注意乘法分配律的变式。
乘法分配律的意义是用,是为了计算的简便。所以,在练习中我注意让学生说清楚怎么使用的。尤其是想想做做第2题中的74×(20+1)和74×20+74。一定要学生说清楚括号中的'1是从哪儿来的。但是简便的思想渗透得还很不够。学生在完成想想做做第5题的时候,一大半的学生都没有采用简算的方法。哪怕他们在经过了第四题的练习时也是一样。
今天教学了运算律——乘法分配律,对于例题的解决,学生能列出不同的算式,45x5+65x5和(45+65)x5,通过各自的计算得出计算结果相同,然后把这两条算式写成等式45x5+65x5=(45+65)x5,学生还能用自己的语言表述自己对等式的理解:45个5加65个5也就是(45+65)个5,然后又让学生再仿写了几个算式后让学生观察等式总结自己的发现,学生会用字母表示出这一规律,但用语言表述有困难了。想想做做第1题只有几个学生把第3小题填错,其实包括后面的练习中,把AxC+BxC改写成(A+B)xC的正确率要比把(A+B)xC改写成AxC+BxC的正确率高,可能还是学生受以前:45个5加65个5也就是(45+65)个5的理解方法的限制而没学会用自己的语言表述乘法分配律,从而也没能真正掌握乘法分配律含义的缘故吧。
想想做做第2题的第3小题74x(21+1)和74x21+74部分学生没有发现它们是相等的,我让认为相等的学生表述理由,学生能把算式改写成74x21+74x1再运用乘法分配律变形成74x(21+1),学生理解后我补充77x99+77=□(□○□)让学生填空,完成情况好多了,在拓展练习时补充了AxB+B=□(□○□)和AxB+B=□(□○□)让学生进一步真正理解乘法分配律的意义。但学生在完成想想做做第5题时,学生多习惯列式48x3+48x2来计算,却不能灵活运用所学知识列成(3+2)x48来计算,虽然运用乘法分配律进行简便计算是下一课的学习内容,但我也由此反思出我教学的不足之处,在例题教学时只关注了得出等式,却忽略了让学生比较等式两边的算式哪边比较简便。于是在第4题的算算比比中才补上了这一点。
最新的《乘法分配律》教学反思 12
乘法分配律运算法则与之前学生学的“交换律与结合律”相比,难度要高一个层次。尽管在周末作业中设计了导学,但多数学生都反映“自学有困难”,按照导学引导也没能完全弄懂“分配律”的意义。
其实分配律在笔算乘法中已有运用,但这节课后,我便以未用学生熟知的笔算入手而后悔着。其实在三年级学乘法笔算时,先用第二个因数的十位乘第一个因数,再用第二个因数的个位乘第一个因数,最后将两次乘积相加,运用的`就是乘法分配律。可能事先我也是担心学生们的现实情况:这样的入手方式不太吸引人,比较枯燥,吸引不了学生,又担忧是否会将学生原本认为难的东西与已会的东西混淆,反而将已有基础丢失。
于是,摒弃这一入手方式,并果断放弃学生们也不太感兴趣的数形结合,我从学生理解难点“为什么可以分开又相加”,用“3×a+5×a”开启他们思维的大门,让他们由浅入深,明确3个a加5个a表示8个a,为后面的理解作铺垫。接下来,我设置了真实的班级情境——植树节,让孩子们在主题图上看到了自己忙碌的身影,并提议“明年植树节每班增加2名同学”,并引导他们提问“明年植树节一共有多少同学参加”,同学们兴致勃勃,用了两种方法解决了问题,并共同分析了两种不同的方法所表示的都是明年参加植树的人的总数,从而再对比、总结规律,进而进行分层练习,让他们的学习不重复且不断有挑战。
整堂课上下来,感觉孩子们很投入,也能在回顾对比中运用分配律,只是计算还不太熟练,需要通过更多的练习来巩固与加强对分配律的理解。同时,还有部分同学听得懂,过后却是一知半解中,也需要在练习中过渡并消化新知。
最新的《乘法分配律》教学反思 13
乘法分配律是第三章的教学难点也是重点。这节课的设计。我是从学生的生活问题入手,利用与生活密切相关的情境图植树问题展开。这节课我力图将教学生学会知识,变为指导学生会学知识。通过让学生经历了 “ 观察、初步发现、举例验证、再观察、发现规律、概括归纳 ” 这样一个知识形成的过程。回顾整个教学过程,这节课的亮点主要体现在以下几个方面:
一、引入生活问题,激趣探究
在教学中,我为学生做好新知铺垫,然后创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。首先我创设情景,提出问题: “ 一共有多少名学生参加这次植树活动? ” 。让学生根据提供的条件,用不同的方法解决,从而发现( 4 + 2 ) ×25=4×25 + 2×25 这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知 “ 乘法分配律 ” 。再让学生 “ 观察这个等式左右两边的不同之处 ” ,再次感知 “ 乘法分配律 ” 。同时利用情景,让学生充分的感知 “ 乘法分配律 ” ,为后来 “ 乘法分配律 ” 的探究提供了有力的保障。
二、提供学生独立探究的机会
我要求学生观察得到的两个等式,提出 “ 你有什么发现? ” 。此时学生对 “ 乘法分配律 ” 已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。使学生自己的模仿中,自然而然地完成猜测与验证,形成比较 “ 模糊 ” 的认识。
三、为学生的学习方式的转变创设了条件
为了让 “ 改变学生的学习方式,让学生进行探索性的学习 ” 不是一句空话。在这节课上,我抓住学生的已有感知,立刻提出 “ 观察这一组等式,你能发现其中的奥秘吗? ” 。这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的.主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的、枯燥的,整个教学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。
最新的《乘法分配律》教学反思 14
由于本学期的时间比较短,所以自己在讲四年级数学课的时候,不免有些匆匆。为了保持好进度,习题处理稍显落后。在近一段时间对孩子们的“运用乘法分配律进行简算”的检查来看,效果不是很好。我发现这是好多学生不容易掌握的,很容易和乘法的结合律弄混淆。所以,我就想搞清楚,到底孩子们是哪里没有搞清楚?就在课下又提问了几个老在分配率出错的孩子运算公式,发现有的'孩子能结结巴巴地把公式背出来,有的是比较顺利地进行背诵。那么,会顺利背诵公式的孩子们到底是哪里不会呢?
带着这个问题,我是旁敲侧击地进行“盘问”——我拿着生活中的2.5元的冰淇淋打比方,问问买23个和28个需要多少钱?孩子们算的很快。他们知道把23分解成20加上3,还有部分学生28×25=(20+8)×25,我当时一项,哎呦不错,还不是完全不会啊。看来,孩子们在真正的生活情境中还是有一大部分人会自觉的用乘法分配律的。可是,真正运用到教学中,孩子们确实很难达到自觉地运用分配律去计算,特别是一些变式就更加的困难了。
在批改作业的时候,有三四个孩子的下面的结果却是让我大跌眼镜——28×25=(20+8)×25=20×8×25,当时我就在想,坏了,孩子们把这两个公示记混淆了。果不其然,我给他们出了一道题72×25=(8×9)×25=8×25+9×25,我在给学生们一一讲解的时候,我就在反思,这一类问题出现是因为孩子们没有自觉观察算式特点的习惯。他们只是急匆匆的完成自己的作业,对于此类的计算的目的单纯得很就是只要得到答案,自己就忽略了计算的过程。
后来我就想,我去时应该多出一点类似于(80+8)×25,72×25,125×32×25的这些题对孩子们进行相应的练习,这样来提高孩子们对公式概念的认识。我可以让孩子们先学会一道题的做法,在慢慢来进行相应的引导。并且出一些题目要求孩子们使用分配律或者结合律等等,对孩子们进行巩固。让孩子们学会多种方法解决一到数学题,把握“凑整”这个解题关键,正确、合理地使用运算定律,就是正确的。做到真正的学以致用!
【最新的《乘法分配律》教学反思】上海花千坊相关的文章:
乘法分配律教学反思02-19
乘法分配律的教学反思03-15
乘法分配律教学设计最新09-22
乘法分配律教学反思15篇03-23
乘法分配律教学反思(15篇)03-26
小学数学乘法分配律教学反思201503-29
《乘法分配律》数学教学反思(精选20篇)02-03
乘法分配律教学设计03-26
《乘法分配律》教学设计11-06
乘法分配律教学设计09-22