上海花千坊

高二数学必背知识点归纳

时间:2023-08-02 09:15:31 蔼媚 数学 我要投稿
  • 相关推荐

高二数学必背知识点归纳

  上学期间,说到知识点,大家是不是都习惯性的重视?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。相信很多人都在为知识点发愁,以下是小编为大家整理的高二数学必背知识点归纳,仅供参考,希望能够帮助到大家。

高二数学必背知识点归纳

  高二数学必背知识点归纳 1

  1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

  2、圆的方程

  (1)标准方程,圆心,半径为r;

  (2)一般方程

  当时,方程表示圆,此时圆心为,半径为

  当时,表示一个点;当时,方程不表示任何图形。

  (3)求圆方程的方法:

  一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

  3、直线与圆的位置关系:

  直线与圆的位置关系有相离,相切,相交三种情况:

  (1)设直线,圆,圆心到l的距离为,则有;;

  (2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

  (3)过圆上一点的切线方程:圆(x—a)2+(y—b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0—a)(x—a)+(y0—b)(y—b)=r2

  4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

  设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

  当时两圆外离,此时有公切线四条;

  当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

  当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

  当时,两圆内切,连心线经过切点,只有一条公切线;

  当时,两圆内含;当时,为同心圆。

  注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

  圆的辅助线一般为连圆心与切线或者连圆心与弦中点

  高二数学必背知识点归纳 2

  抛物线的性质:

  1、抛物线是轴对称图形。对称轴为直线

  x=—b/2a。

  对称轴与抛物线的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2、抛物线有一个顶点P,坐标为

  P(—b/2a,(4ac—b^2)/4a)

  当—b/2a=0时,P在y轴上;当Δ=b^2—4ac=0时,P在x轴上。

  3、二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4、一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5、常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6、抛物线与x轴交点个数

  Δ=b^2—4ac>0时,抛物线与x轴有2个交点。

  Δ=b^2—4ac=0时,抛物线与x轴有1个交点。

  Δ=b^2—4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=—b±√b^2—4ac的值的相反数,乘上虚数i,整个式子除以2a)

  焦半径:

  焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点Fè???÷?

  p2,0的距离|PF|=x0+p2。

  求抛物线方程的方法:

  (1)定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程。

  (2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式。从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0)。

  高二数学必背知识点归纳 3

  一、随机事件

  主要掌握好(三四五)

  (1)事件的三种运算:并(和)、交(积)、差;注意差A—B可以表示成A与B的逆的积。

  (2)四种运算律:交换律、结合律、分配律、德莫根律。

  (3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。

  二、概率定义

  (1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;

  (3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;

  (4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。

  三、概率性质与公式

  (1)加法公式:P(A+B)=p(A)+P(B)—P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

  (2)差:P(A—B)=P(A)—P(AB),特别地,如果B包含于A,则P(A—B)=P(A)—P(B);

  (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);

  (4)全概率公式:P(B)=∑P(Ai)P(B|Ai)。它是由因求果,

  贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;

  如果一个事件B可以在多种情形(原因)A1,A2,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式。

  (5)二项概率公式:Pn(k)=C(n,k)p^k(1—p)^(n—k),k=0,1,2,n。当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。

  高二数学必背知识点归纳 4

  直线的倾斜角:

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  直线的斜率:

  ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

  ②过两点的直线的斜率公式。

  注意:

  (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  (2)k与P1、P2的顺序无关;

  (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  直线方程:

  1、点斜式:y—y0=k(x—x0)

  (x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。

  2、斜截式:y=kx+b

  直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。该方程叫做直线的斜截式方程,简称斜截式。此斜截式类似于一次函数的表达式。

  3、两点式;(y—y1)/(y2—y1)=(x—x1)/(x2—x1)

  如果x1=x2,y1=y2,那么两点就重合了,相当于只有一个已知点了,这样不能确定一条直线。

  如果x1=x2,y1y2,那么此直线就是垂直于X轴的一条直线,其方程为x=x1,不能表示成上面的一般式。

  如果x1x2,但y1=y2,那么此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不能表示成上面的一般式。

  4、截距式x/a+y/b=1

  对x的截距就是y=0时,x的值,对y的截距就是x=0时,y的值。x截距为a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推导y=kx+b,—kx=b—y令x=0求出y=b,令y=0求出x=—b/k所以截距a=—b/k,b=b带入得x/a+y/b=x/(—b/k)+y/b=—kx/b+y/b=(b—y)/b+y/b=b/b=1。

  5、一般式;Ax+By+C=0

  将ax+by+c=0变换可得y=—x/b—c/b(b不为零),其中—x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析几何中更常用,用方程处理起来比较方便。

  高二数学必背知识点归纳 5

  1、系统抽样(等距抽样或机械抽样):

  把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。

  K(抽样距离)=N(总体规模)/n(样本规模)

  前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

  2、系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

  高二数学必背知识点归纳 6

  (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

  (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

  (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

  (4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

  (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

  (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。

  然说难度比较大,我建议考生,采取分部得分整个试

  高二数学必背知识点归纳 7

  1、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

  2、几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);试验的全部结果所构成的区域长度(面积或体积)

  3、几何概型的特点:

  1)试验中所有可能出现的结果(基本事件)有无限多个;

  2)每个基本事件出现的可能性相等、

  4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。

  通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件A的概率可以用“事件A包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。下面就几何概型常见类型题作一归纳梳理。

  高二数学必背知识点归纳 8

  1.向量的基本概念

  (1)向量

  既有大小又有方向的量叫做向量。物理学中又叫做矢量。如力、速度、加速度、位移就是向量。

  向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向。向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)

  (2)平行向量

  方向相同或相反的非零向量,叫做平行向量。平行向量也叫做共线向量。

  若向量a、b平行,记作a∥b。

  规定:0与任一向量平行。

  (3)相等向量

  长度相等且方向相同的向量叫做相等向量。

  ①向量相等有两个要素:一是长度相等,二是方向相同,二者缺一不可。

  ②向量a,b相等记作a=b。

  ③零向量都相等。

  ④任何两个相等的非零向量,都可用同一有向线段表示,但特别要注意向量相等与有向线段的起点无关。

  2.对于向量概念需注意

  (1)向量是区别于数量的一种量,既有大小,又有方向,任意两个向量不能比较大小,只可以判断它们是否相等,但向量的模可以比较大小。

  (2)向量共线与表示它们的有向线段共线不同。向量共线时,表示向量的有向线段可以是平行的,不一定在同一条直线上;而有向线段共线则是指线段必须在同一条直线上。

  (3)由向量相等的定义可知,对于一个向量,只要不改变它的大小和方向,它是可以任意平行移动的,因此用有向线段表示向量时,可以任意选取有向线段的起点,由此也可得到:任意一组平行向量都可以平移到同一条直线上。

【高二数学必背知识点归纳】上海花千坊相关的文章:

高二政治必背知识点归纳总结11-26

高二数学精选必背知识点梳理12-13

地理高考必背知识点精选归纳02-08

高考英语必背的知识点归纳12-01

中考地理必背知识点归纳11-30

高考地理必背知识点归纳11-28

中考政治必背的知识点归纳06-16

初中政治必背知识点归纳01-25

考研政治必背的知识点归纳11-03