上海花千坊

高中物理知识点

时间:2024-08-04 17:31:21 物理 我要投稿

【精】高中物理知识点

  上学期间,大家都没少背知识点吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。为了帮助大家掌握重要知识点,下面是小编为大家整理的高中物理知识点,仅供参考,欢迎大家阅读。

【精】高中物理知识点

高中物理知识点1

  作用力与反作用力

  探究作用力与反作用力的'关系

  1、一个物体对另一个物体有作用力时,同时也受到另一物体对它的作用力,这种相互作用力称为作用力和反作用力。

  2、力的性质:物质性(必有施/手力物体),相互性(力的作用是相互的)

  3、平衡力与相互作用力:

  同:等大,反向,共线

  异:相互作用力具有同时性(产生、变化、小时),异体性(作用效果不同,不可抵消),二力同性质。平衡力不具备同时性,可相互抵消,二力性质可不同。

高中物理知识点2

  【自由落体运动的定义】

  从静止出发,只在重力作用下而降落的运动模式,叫自由落体运动。

  自由落体运动是最典型的匀变速直线运动;是初速度为零,加速度为g的匀加速直线运动。

  地球表面附近的.上空可看作是恒定的重力场。如不考虑大气阻力,在该区域内的自由落体运动的方向是竖直向下的(并非指向地心),加速度为重力加速度g的匀加速直线运动。

  只有在赤道上或者两极上,自由落体运动的方向(也就是重力的方向)才是指向地球中心的。

  g≈9.8m/s^2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

  【自由落体运动的基本公式】

  (1)Vt=gt

  (2)h=1/2gt^2

  (3)Vt^2=2gh

  这里的h与x同样都是指位移,一般在自由落体中用h表示数值方向的位移量。

高中物理知识点3

  一、探究形变与弹力的关系

  弹性形变(撤去使物体发生形变的外力后能恢复原来形状的物体的形变)范性形变(撤去使物体发生形变的外力后不能恢复原来形状的物体的形变)

  弹性限度:若物体形变过大,超过一定限度,撤去外力后,无法恢复原来的形状,这个限度叫弹性限度。

  二、探究摩擦力

  滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。

  说明:摩擦力的产生是由于物体表面不光滑造成的。

  三、力的合成与分解

  (1)若处于平衡状态的物体仅受两个力作用,这两个力一定大小相等、方向相反、作用在一条直线上,即二力平衡

  (2)若处于平衡状态的物体受三个力作用,则这三个力中的.任意两个力的合力一定与另一个力大小相等、方向相反、作用在一条直线上

  (3)若处于平衡状态的物体受到三个或三个以上的力的作用,则宜用正交分解法处理,此时的平衡方程可写成

  ①确定研究对象;

  ②分析受力情况;

  ③建立适当坐标;

  ④列出平衡方程

  四、共点力的平衡条件

  1、共点力:物体受到的各力的作用线或作用线的延长线能相交于一点的力

  2、平衡状态:在共点力的作用下,物体保持静止或匀速直线运动的状态。

  说明:这里的静止需要二个条件,一是物体受到的合外力为零,二是物体的速度为零,仅速度为零时物体不一定处于静止状态,如物体做竖直上抛运动达到点时刻,物体速度为零,但物体不是处于静止状态,因为物体受到的合外力不为零。

  3、共点力作用下物体的平衡条件:合力为零,即0

  说明;

  ①三力汇交原理:当物体受到三个非平行的共点力作用而平衡时,这三个力必交于一点;

  ②物体受到N个共点力作用而处于平衡状态时,取出其中的一个力,则这个力必与剩下的(N—1)个力的合力等大反向。

  ③若采用正交分解法求平衡问题,则其平衡条件为:FX合=0,FY合=0;

  ④有固定转动轴的物体的平衡条件

  五、作用力与反作用力

  学过物理学的人都会知道牛顿第三定律,此定律主要说明了作用力和反作用的关系。在对一个物体用力的时候同时会受到另一个物体的反作用力,这对力大小相等,方向相反,并且保持在一条直线上。

高中物理知识点4

  牛顿第一定律

  1、牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。——物体的运动并不需要力来维持。

  2、物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。

  3、惯性是物体的`固有属性,与物体受力、运动状态无关,质量是物体惯性大小的量度。

  4、物体不受力时,惯性表现为物体保持匀速直线运动或静止状态;受外力时,惯性表现为运动状态改变的难易程度不同。

高中物理知识点5

  基本要求:

  1、知道静摩擦力的产生条件,会判断静摩擦力的方向、

  2、通过实验探究静摩擦力的大小,掌握静摩擦力的值及变化范围、

  3、知道滑动摩擦力的产生条件,会判断滑动摩擦力的方向、

  4、会运用公式F=μFN计算滑动摩擦力的大小、

  5、知道动摩擦因数无单位,了解动摩擦因数与哪些因素有关、

  6、能用二力平衡条件判断静摩擦力的大小和方向、

  1、摩擦力方向的判断

  (1)滑动摩擦力方向的判断方法

  滑动摩擦力的方向总跟接触面相切,并且跟物体的相对运动方向相反、不难看出,判断滑动摩擦力方向的关键是判断“相对运动的方向”、要做到这一点不是很难,因为物体的运动是比较直观的,但千万不要认为“相对运动的方向”是物体相对于地面的运动方向,这是初学者容易犯的一个错误、所谓的“相对运动的方向”是指“受力物体”相对于“施力物体”的运动方向、例如,你在运动的汽车上推动箱子时,箱子受到的滑动摩擦力的方向与箱子相对于汽车的运动方向相反、

  (2)静摩擦力方向的判断方法

  静摩擦力的方向总跟接触面相切,并且跟物体相对运动趋势的方向相反、当然这里的关键也是判断“相对运动趋势的方向”,而相对运动趋势的方向又难以判断,这就使静摩擦力方向的判定成为一个难点、同学们可以采用下列方法判断静摩擦力的方向:

  ①用假设法判断静摩擦力的方向,我们可以假设接触面是光滑的,判断物体将向哪滑动,从而确定相对运动趋势的方向,进而判断出静摩擦力的方向、②根据物体的运动状态判断静摩擦力的方向

  2、摩擦力大小的确定

  (1)滑动摩擦力的大小

  滑动摩擦力的大小遵循关系式F=μFN,式中的FN是两个物体表面间的压力,称为正压力(垂直于接触面的力),性质上属于弹力,它不是物体的重力,许多情况下需结合物体的平衡条件加以确定;

  式中的μ为动摩擦因数,它的数值跟相互接触的两个物体的材料和接触面的粗糙程度有关,与两物体间的正压力及是否发生相对滑动无关,μ没有单位、

  滑动摩擦力的大小与物体间接触面积的大小无关,与物体的运动性质无关,与相对运动的速度大小无关,只要出现相对滑动,滑动摩擦力恒为F=μFN、

  (2)静摩擦力的大小静摩擦力的大小随推力的增大而增大,所以静摩擦力的大小由外部因素决定,一般应根据物体的运动状态来确定其大小、目前可根据初中二力平衡知识求解静摩擦力、当人的水平推力增大到某一值时,物体就要滑动,此时静摩擦力达到值,我们把它叫做静摩擦力(Fm)、故静摩擦力的取值范围是0

  3、正确理解摩擦力产生的条件及效果

  (1)两物体间产生摩擦力必须同时满足以下三个条件:

  ①两个物体的接触面粗糙;

  ②两物体间存在弹力;

  ③两物体有相对运动或相对运动趋势、

  因此,若两物体间有弹力产生,不一定产生摩擦力,但若两个物体间有摩擦力产生必有弹力产生、

  (2)静摩擦力中的“静”指的是相对静止,滑动摩擦力中的“滑动”指的也是相对滑动,其中应以摩擦力的施力物体为参考系、静摩擦力产生在相对静止(有相对运动趋势)的两物体间,但这两个物体不一定静止,它们可能一起运动,所以,受静摩擦力作用的物体不一定静止、滑动摩擦力产生在相对滑动的两物体之间,但受到滑动摩擦力作用的物体可能是静止的

  (3)在两种摩擦力的定义中都出现了“阻碍”一词,所以有些同学就认为,摩擦力总是与物体的运动方向相反,总是阻碍物体的运动、其实不然,摩擦力的方向只是与相对施力物体的运动方向相反,阻碍的只是物体相对于施力物体的运动,对于物体的实际运动(通常以地面作为参考系),摩擦力可以是阻力,也可以是动力、例如:人跑步时地面给人的摩擦力就是动力;传送带上的物体随传送带一起向上运动时,摩擦力也是动力、

  压强知识

  1、水的密度:ρ水=1.0×103kg/m3=1 g/ cm3

  2、 1m3水的质量是1t,1cm3水的质量是1g。

  3、利用天平测量质量时应"左物右码"。

  4、同种物质的'密度还和状态有关(水和冰同种物质,状态不同,密度不同)。

  5、增大压强的方法:

  ①增大压力

  ②减小受力面积

  6、液体的密度越大,深度越深液体内部压强越大。

  7、连通器两侧液面相平的条件:

  ①同一液体

  ②液体静止

  8、利用连通器原理:(船闸、茶壶、回水管、水位计、自动饮水器、过水涵洞等)。

  9、大气压现象:(用吸管吸汽水、覆杯试验、钢笔吸水、抽水机等)。

  10、马德保半球试验证明了大气压强的存在,托里拆利试验证明了大气压强的值。

  11、浮力产生的原因:液体对物体向上和向下压力的合力。

  12、物体在液体中的三种状态:漂浮、悬浮、沉底。

  13、物体在漂浮和悬浮状态下:浮力=重力

  14、物体在悬浮和沉底状态下:V排= V物

  15、阿基米德原理F浮= G排也适用于气体(浮力的计算公式:F浮= ρ气gV排也适用于气体)

  电动势的方向知识点

  电动势的方向可以通过楞次定律来判定。高中物理楞次定律指出:感应电流的磁场要阻碍原磁通的变化。对于动生电动势,同学们也可用右手定则判断感应电流的方向,也就找出了感应电动势的方向。需要注意的是,楞次定律的应用更广,其核心在”阻碍”二字上。

  (1)E=n_ΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ,Δt磁通量的变化率}

  (2)E=BLVsinA(切割磁感线运动)E=BLV中的v和L不可以和磁感线平行,但可以不和磁感线垂直,其中sinA为v或L与磁感线的夹角。{L:有效长度(m)}

  (3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}

  (4)E=B(L2)ω/2(导体一端固定以ω旋转切割)其中ω:角速度(rad/s),V:速度(m/s)

  电磁感应现象是电磁学中最重大的发现之一,它显示了电、磁现象之间的相互联系和转化,对其本质的深入研究所揭示的电、磁场之间的联系,对麦克斯韦电磁场理论的建立具有重大意义。电磁感应现象在电工技术、电技术以及电磁测量等方面都有广泛的应用。

高中物理知识点6

  高中地理的知识

  等太阳高度线图判读技巧

  1.等太阳高度线图是用等太阳高度线(由太阳高度相等的各点连接而成的线)反映某一时刻太阳高度在全球或部分区域的分布状况,实质上可以看作是以太阳直射点为中心的俯视图。

  2.判读等太阳高度线图的主要内容:太阳直射点经度和纬度的判断、各地地方时的推算、各地太阳高度的推算和比较、昼夜长短变化及与图示时间相关的地理现象的判断等。

  3.等太阳高度线图的判读应注意:

  (1)等太阳高度线图的中心点为太阳直射点。

  (2)一般来说,等太阳高度线图中最大的圆圈就是太阳高度为0°的等太阳高度线,即晨昏线;图中所示的半球全部为昼半球。太阳直射经线以东最大的半圆为昏线,以西最大的半圆为晨线。在有数值标注的图上,如果其最大的圆圈并不表示太阳高度为0°的等太阳高度线,就不是晨昏线。这种局部图表示的只是昼半球中太阳高度比较大的一部分。

  (3)在太阳直射的经线上,太阳高度相差多少度,纬度就相差多少度。在太阳直射的纬线上(赤道除外),太阳高度相差多少度,经度的差值一定大于太阳高度的?差值?。

  (4)当太阳直射赤道时,直射经线的最北点为北极,最南点为南极。太阳直射北(南)半球时,北(南)极点位于最北(南)点以南(北),北(南)极点与最北(南)点的距离为太阳直射的纬度度数,图上没有南(北)极点。

  高三物理必考知识点

  电磁感应

  1.[感应电动势的大小计算公式]

  1)e=nδφ/δt(普适公式){法拉第电磁感应定律,e:感应电动势(v),n:感应线圈匝数,δφ/δt:磁通量的变化率}

  2)e=blv垂(切割磁感线运动) {l:有效长度(m)}

  3)em=nbsω(交流发电机最大的感应电动势) {em:感应电动势峰值}

  4)e=bl2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),v:速度(m/s)}

  2.磁通量φ=bs

  {φ:磁通量(wb),b:匀强磁场的磁感应强度(t),s:正对面积(m2)}

  3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

  4.自感电动势e自=nδφ/δt=lδi/δt{l:自感系数(h)(线圈l有铁芯比无铁芯时要大),

  δi:变化电流,?t:所用时间,δi/δt:自感电流变化率(变化的快慢)}

  注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点;

  (2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1h=103mh=106μh。

  (4)其它相关内容:自感/日光灯。

  高考地理的必考知识点

  判读锋面气旋的四大思路

  1.确定锋面位置:锋面一般形成于地面气旋的'低压槽中,锋线与槽线重合。

  在等压线图中,低压中心等压线向外弯曲最大的地方的连线就是槽线所在位置(一般有两条),也即锋面所在位置。

  2.确定气旋前后方向:先在图中用一个箭头表示气流前进方向,箭头指向北逆南顺,气流的前进方向为前方,反之为后方。

  3.判断锋面性质:气旋东部气流来自较低的纬度,气温较高,当它向高纬移动时,遇到来自较高纬度的冷空气就形成了暖锋。

  同样的,气旋西部气流来自高纬度地区,向低纬运动时遇到来自较低纬度的暖空气而形成冷锋。即“东暖西冷”,南北半球都一样。

  4.判断雨区位置:雨区主要位于冷气团一侧,故暖锋雨区在锋前,冷锋雨区在锋后。

  高中地理的必考知识大全

  何谓雪线及影响雪线的因素

  1.雪线的含义:雪线实际上为一个地带。

  在高寒地区,由于气温低,降雪多,每年降雪量大于融雪量,因而形成终年积雪区。雪线既是终年积雪区的下界,也是固体降水量和消融量(包括蒸发消耗和融化量)相等的界线,故又将雪线称为固体降水的零平衡线。雪线是控制冰川发育和分布的重要界线,只有雪线以上的地区,才会形成多年积雪和冰川。如果在某一高度以上,周围视线以内有一半以上被积雪覆盖且终年不化,这个高度就称为雪线高度。

  2.影响雪线高度的因素

  气温:雪线高度与气温成正比,由赤道向两极逐渐降低

  降水:雪线高度与降水量成反比,降水量小,则雪线高度高;降水量大,则雪线高度低。如副热带地区降水少,雪线最高,为5000—6400米;赤道地区降水多,雪线高度一般为4400—4900米。迎风坡降水多,雪线低;背风坡降水少,雪线高。如喜马拉雅山南坡雪线为4600米,北坡雪线则高达5800米

  地貌:地形对雪线高度的影响主要表现在坡向、坡度等方面。如阳坡气温高,冰雪消融量大,阴坡则相反。地形陡峭的地方不易积雪,陡坡雪线较高,缓坡则相反

  气候:气候变化直接影响雪线高度,气候变暖则雪线上升,气候变冷则雪线下降

  注意:具体到某一山区,主要看气候(包含了气温、降水量等因素,非上表中的“气候”)与地貌两方面对其影响的强弱。

高中物理知识点7

  第一节声音的产生和传播

  一、声音的产生

  1、声音是由物体的振动产生的。一切正在发生的物体都在振动。

  2、将物体发声振动的规律记录下来就可保存物体所发出的声音。

  3、产生声音的物体称为发声体,也叫声源。发声体可以是固体、液体,也可以是气体。

  二、声音的传播

  1、声音是以波的形式在物质中传播的,所以也把声音叫做声波。

  2、声音的传播需要物质,物理学中把这样的物质叫做介质。固体、液体和气体都是传播声音的介质。真空不能传声。

  三、声速及回声

  1、声速是描述声音传播快慢的物理量。

  2、声速的大小等于声音在单位时间内传播的距离。公式为v=S/t。

  3、回声是声音在传播的过程中,遇障碍物,反射回来的声音。回声与原声时间间隔大于0.1秒时,人们才能把他们区分开。

  四、影响声速的因素

  1、声速的大小跟介质的种类有关。一般是在固体中最快,在液体中次之,在气体中最慢。

  2、声速的大小跟介质的温度有关。一般是在同种介质中,温度越高传播越快。

  五、人耳听到声音的过程

  1、人感知声音的基本过程:外界传来的声音引起鼓膜的振动,这种振动产生的信号经过听小骨及其他组织传给听觉神经,听觉神经再把信号传给大脑,这样人就听到声音了。

  2、人耳能听到声音的基本条件:一是声音的传递组织(如鼓膜、听小骨)正常;二是听觉神经正常。

  3、耳聋的两种类型:一种是由于声音的传递组织出现障碍造成的耳聋称为传导性耳聋;另一种是由于听觉神经出现障碍造成的耳聋称为神经性耳聋。

  六、骨传导

  1、声音通过头骨、颌骨传到听觉神经,引起听觉的传声方式叫做骨传导。

  2、骨传导的实质是声音能在固体中传播。

  第二节声音的特性

  一、音调

  1、音调指声音的高低。音调的高低取决于物体振动的快慢(即振动频率),振动越快(即频率越高)音调就越高;

  2、频率是指物体每秒内振动的次数,单位是赫兹,简称赫,符号Hz。

  3、人的听觉频率范围大约是20—20000Hz。

  高于20000Hz(人类听觉上限)的声叫超声波。

  低于20Hz(人类听觉下限)的声叫次声波。

  通常人们将人类能听到的声叫做声音,将声音、超声波、次声波统称为声。

  二、响度

  1、响度指声音的强弱,即大小。

  2、物体振动的幅度叫做振幅。物体振幅越大,响度越大。离发声体越远,响度越小。

  三、音色

  1、音色反映声音的品质和特色。音色又叫音品。

  2、音色是由发声体的材料和结构决定的。

  3、不同的发声体发出声音的音色不同。

  四、乐音

  1、悠扬、悦耳,听到时感觉非常舒服的声音叫乐音。

  2、乐音是物体有规律的振动发出来的,波形是有规则的.。

  五、乐器

  1、为了欣赏音乐,人们制造了各种能产生乐音的器具,称为乐器。

  2、乐器可以分为三种主要的类型:打击乐器、弦乐器你、管乐器。

  3、所有的乐器的物理原理都一样,都是通过振动发声的。

  六、常见的乐器

  1、打击乐器:像鼓、锣等受到打击发生振动而产生声音的乐器叫打击乐器。以鼓为例,鼓皮绷得越紧,振动得越快,音调就越高。击鼓的力量越大,鼓皮振动的幅度就越大,声音的响度就越大。

  2、弦乐器:像二胡、小提琴、钢琴和吉他等通过弦的振动而发声的乐器叫弦乐器。长而粗的弦发声的音调低,短而细的弦发声的音调高。绷得越紧的弦发声的音调越高。弦的振幅越大,响度越大。

  3、管乐器:像长笛、箫等乐器属于管乐器。管乐器中有一段空气柱,吹奏时空气柱振动发声。抬起不同的手指,就会改变空气柱的长度,从而改变音调。空气柱越长产生的音调越低。

  第三节声的利用

  一、声与信息

  1、声音可以传递信息。例如,大象利用次声波进行交流等。

  2、利用回声可以定位。例如,蝙蝠利用超声波的回波确定目标的位置。

  3、利用回声可以定位成像。例如,利用B超诊断人体病情,探视胎儿的生长发育情况等。

  二、声与能力

  1、声波可以传递能量。例如,发声的扬声器旁的烛焰摇曳。

  2、用超声波清洗物品。例如,利用超声波清洗精密器件、清洗牙齿等。

  3、用超声波除尘。例如,在冒黑烟的烟筒里放一个超声波除尘器除尘。

  4、用超声波动手术。例如,医生用超声波除去人体内的结石,治疗癌症等。

  第四节噪声的危害和控制

  一、噪声及其来源

  1、从物理学的角度讲,噪声是发声体做无规则振动时发出的声音。

  2、从环保角度讲,凡是妨碍人们正常休息、学习和工作的声音,以及对人们要听的声音产生干扰的声音,都属于噪声。

  3、噪声主要来源于人类自身和人类发明的各种机器。

  二、噪声强弱的等级和噪声的危害

  1、人们以分贝(dB)为单位来表示声音强弱的等级。0dB是人刚能听到的最微弱的声音——听觉下限。

  2、为了保护听力,声音不能超过90dB;为了保证工作和学习,声音不能超过70dB;为了保证休息和睡眠,声音不能超过50dB。

  3、如果突然暴露在150dB的噪声环境中,鼓膜会破裂出血,双耳完全失去听力。

  三、控制噪声

  1、在声源处减弱。例如,可以更换或改造噪声大的机器或部件,在噪声源的周围加吸声、隔声的罩子等。

  2、在传播过程中减弱噪声。例如,使有噪声源的厂房门窗背向居民区,植树造林,建立隔声屏障来反射或吸收部分传来的噪声等。

  3、在人耳处减弱。例如,戴耳罩或用棉球塞住人耳等?

高中物理知识点8

  高中物理知识点总结

  1质点的运动(1)------直线运动

  1)匀变速直线运动

  1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as

  3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

  5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t

  7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

  8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

  9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

  注:

  (1)平均速度是矢量;

  (2)物体速度大,加速度不一定大;

  (3)a=(Vt-Vo)/t只是量度式,不是决定式;

  (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

  2)自由落体运动

  1.初速度Vo=0

  2.末速度Vt=gt

  3.下落高度h=gt2/2(从Vo位置向下计算)

  4.推论Vt2=2gh

  注:

  (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

  (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

  (3)竖直上抛运动

  1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

  3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)

  5.往返时间t=2Vo/g (从抛出落回原位置的时间)

  注:

  (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

  (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

  (3)上升与下落过程具有对称性,如在同点速度等值反向等。

  2质点的运动(2)----曲线运动、万有引力

  1)平抛运动

  1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

  3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2

  5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

  6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

  合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

  7.合位移:s=(x2+y2)1/2,

  位移方向与水平夹角α:tgα=y/x=gt/2Vo

  8.水平方向加速度:ax=0;竖直方向加速度:ay=g

  注:

  (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

  (2)运动时间由下落高度h(y)决定与水平抛出速度无关;

  (3)θ与β的关系为tgβ=2tgα;

  (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

  2)匀速圆周运动

  1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf

  3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

  5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

  7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

  8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

  注:

  (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

  (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

  3)万有引力

  1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

  2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

  3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

  4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

  5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

  6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

  注:

  (1)天体运动所需的向心力由万有引力提供,F向=F万;

  (2)应用万有引力定律可估算天体的质量密度等;

  (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

  (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

  (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

  3力(常见的力、力的合成与分解)

  1)常见的力

  1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

  2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

  3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

  4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

  5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

  6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)

  7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

  8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

  9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

  注:

  (1)劲度系数k由弹簧自身决定;

  (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

  (3)fm略大于μFN,一般视为fm≈μFN;

  (4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

  (5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

  (6)安培力与洛仑兹力方向均用左手定则判定。

  2)力的合成与分解

  1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2 (F1>F2)

  2.互成角度力的合成:

  F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

  3.合力大小范围:|F1-F2|≤F≤|F1+F2|

  4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

  注:

  (1)力(矢量)的合成与分解遵循平行四边形定则;

  (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

  (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

  (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

  (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

  4动力学(运动和力)

  1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

  2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

  3.牛顿第三运动定律:F=-F?{负号表示方向相反,F、F?各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

  4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}

  5.超重:FN>G,失重:FN

  6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

  注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

  5振动和波(机械振动与机械振动的传播)

  1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}

  2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}

  3.受迫振动频率特点:f=f驱动力

  4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕

  5.机械波、横波、纵波〔见第二册P2〕

  6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}

  7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)

  8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大

  9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)

  10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}

  注:

  (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

  (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;

  (3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;

  (4)干涉与衍射是波特有的;

  (5)振动图象与波动图象;

  (6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。

  6冲量与动量(物体的受力与动量的变化)

  1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}

  3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}

  4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}

  5.动量守恒定律:p前总=p后总或p=p’?也可以是m1v1+m2v2=m1v1?+m2v2?

  6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}

  7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}

  8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}

  9.物体m1以v1初速度与静止的物体m2发生弹性正碰:

  v1?=(m1-m2)v1/(m1+m2) v2?=2m1v1/(m1+m2)

  10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

  11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失

  E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相对子弹相对长木块的位移}

  注:

  (1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;

  (2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;

  (3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);

  (4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;

  (5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;

  (6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。

  7功和能(功是能量转化的量度)

  1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

  2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

  3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}

  4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}

  5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

  6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}

  7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

  8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}

  9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

  10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

  11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

  12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

  13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

  14.动能定理(对物体做正功,物体的动能增加):

  W合=mvt2/2-mvo2/2或W合=ΔEK

  {W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

  15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

  16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

  注:

  (1)功率大小表示做功快慢,做功多少表示能量转化多少;

  (2)O0≤α<90O做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);

  (3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少

  (4)重力做功和电场力做功均与路径无关(见2、3两式);

  (5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;

  (6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;

  (7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。

  8分子动理论、能量守恒定律

  1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米

  2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}

  3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

  4.分子间的引力和斥力

  (1)r

  (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)

  (3)r>r0,f引>f斥,F分子力表现为引力

  (4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0

  5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),

  W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}

  6.热力学第二定律

  克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);

  开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}

  7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}

  注:

  (1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

  (2)温度是分子平均动能的标志;

  3)分子间的引力和斥力同时存在,随分子间距离的`增大而减小,但斥力减小得比引力快;

  (4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;

  (5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大δu>0;吸收热量,Q>0

  (6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

  (7)r0为分子处于平衡状态时,分子间的距离;

  (8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

  9气体的性质

  1.气体的状态参量:

  温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,

  热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}

  体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

  压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

  2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

  3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}

  注:

  (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

  (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

  10电场

  1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

  2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

  3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

  4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}

  5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

  6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

  7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

  8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

  9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

  10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}

  11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)

  12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

  13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

  常见电容器〔见第二册P111〕

  14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

  15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

  类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)

  抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

  注:

  (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

  (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

  (3)常见电场的电场线分布要求熟记〔见图[第二册P98];

  (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

  (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

  (6)电容单位换算:1F=106μF=1012PF;

  (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;

  (8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

  11恒定电流

  1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

  2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

  3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}

  4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

  {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

  5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

  6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

  7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

  8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

  9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)

  电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+

  电流关系I总=I1=I2=I3 I并=I1+I2+I3+

  电压关系U总=U1+U2+U3+ U总=U1=U2=U3

  功率分配P总=P1+P2+P3+ P总=P1+P2+P3+

  10.欧姆表测电阻

  (1)电路组成(2)测量原理

  两表笔短接后,调节Ro使电表指针满偏,得

  Ig=E/(r+Rg+Ro)

  接入被测电阻Rx后通过电表的电流为

  Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

  由于Ix与Rx对应,因此可指示被测电阻大小

  (3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

  (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

  11.伏安法测电阻

  电流表内接法:

  电压表示数:U=UR+UA

  电流表外接法:

  电流表示数:I=IR+IV

  Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)

  选用电路条件Rx>>RA [或Rx>(RARV)1/2]

  选用电路条件Rx<

  12.滑动变阻器在电路中的限流接法与分压接法

  限流接法

  电压调节范围小,电路简单,功耗小

  便于调节电压的选择条件Rp>Rx

  电压调节范围大,电路复杂,功耗较大

  便于调节电压的选择条件Rp

  注:

  (1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω

  (2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;

  (3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;

  (4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;

  (5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);

  (6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。

  12磁场

  1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m

  2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

  3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

  4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

  (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

  (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

  注:

  (1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

  (2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;

  (3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料

  13电磁感应

  1.[感应电动势的大小计算公式]

  1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}

  2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}

  3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}

  4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}

  2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}

  3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

  4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}

  注:

  (1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;

  (2)自感电流总是阻碍引起自感电动势的电流的变化;

  (3)单位换算:1H=103mH=106μH;

  (4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

  14交变电流(正弦式交变电流)

  1.电压瞬时值e=Emsinωt电流瞬时值i=Imsinωt;(ω=2πf)

  2.电动势峰值Em=nBSω=2BLv电流峰值(纯电阻电路中)Im=Em/R总

  3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2

  4.理想变压器原副线圈中的电压与电流及功率关系

  U1/U2=n1/n2; I1/I2=n2/n2; P入=P出

  5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损?=(P/U)2R;(P损?:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;

  6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);

  S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。

  高中物理基础知识

  机械运动

  一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式。为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动。

  质点

  用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型。仅凭物体的大小不能做视为质点的依据。

  位移和路程

  位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量;路程是物体运动轨迹的长度,是标量。路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程。

  速度和速率

  1.速度:描述物体运动快慢的物理量,是矢量。

  ①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述。②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧,瞬时速度是对变速运动的精确描述;

  2.速率:①速率只有大小,没有方向,是标量。

  ②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率。在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等。

  加速度

  1.加速度是描述速度变化快慢的物理量,它是矢量,加速度又叫速度变化率;

  2.定义:在匀变速直线运动中,速度的变化Δv跟发生这个变化所用时间Δt的比值,叫做匀变速直线运动的加速度,用a表示,a=Δv/Δt;

  3.方向:与速度变化Δv的方向一致,但不一定与v的方向一致;

  4.加速度与速度无关,只要速度在变化,无论速度大小,都有加速度;

  只要速度不变化(匀速),无论速度多大,加速度总是零。只要速度变化快,无论速度是大、是小或是零,物体加速度就大。

  匀速直线运动

  1.定义:在任意相等的时间内位移相等的直线运动叫做匀速直线运动;

  2.特点:a=0,v=恒量;

  3.位移公式:S=vt。

  匀变速直线运动

  1.定义:在任意相等的时间内速度的变化相等的直线运动叫匀变速直线运动;

  2.特点:a=恒量;

  3.公式:①速度公式:V=V0+at;②位移公式:s=v0t+?at?;③速度位移公式:vt?-v0?=2as;④平均速度V=(vt?+v0?)/2;

  以上各式均为矢量式,应用时应规定正方向,然后把矢量化为代数量求解,通常选初速度方向为正方向,凡是跟正方向一致的取“+”值,跟正方向相反的取“-”值。

  重要结论

  1.匀变速直线运动的质点,在任意两个连续相等的时间T内的位移差值是恒量,即ΔS=Sn+l–Sn=aT?=恒量;

  2.匀变速直线运动的质点,在某段时间内的中间时刻的瞬时速度,等于这段时间内的平均速度,即:v=(v0+vt)/2。

  自由落体运动

  1.条件:初速度为零,只受重力作用;

  2.性质:是一种初速为零的匀加速直线运动,a=g;

  3.公式:①vt=>②s=(gt?)/2

  运动图像

  1.位移图像(s-t图像):①图像上一点切线的斜率表示该时刻所对应速度;②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动;③图像与横轴交叉,表示物体从参考点的一边运动到另一边;

  2.速度图像(v-t图像):①在速度图像中,可以读出物体在任何时刻的速度;

  ②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值;③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率;④图线与横轴交叉,表示物体运动的速度反向;⑤图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动。

高中物理知识点9

  1、受力分析:

  要根据力的概念,从物体所处的环境(与多少物体接触,处于什么场中)和运动状态着手,其常规如下:

  (1)确定研究对象,并隔离出来;

  (2)先画重力,然后弹力、摩擦力,再画电、磁场力;

  (3)检查受力图,找出所画力的施力物体,分析结果能否使物体处于题设的运动状态(静止或加速),否则必然是多力或漏力;

  (4)合力或分力不能重复列为物体所受的力。

  2、整体法和隔离体法

  (1)整体法:就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部之间的相互作用力。

  (2)隔离法:就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑物体对其它物体的作用力。

  (3)方法选择

  所涉及的物理问题是整体与外界作用时,应用整体分析法,可使问题简单明了,而不必考虑内力的作用;当涉及的物理问题是物体间的`作用时,要应用隔离分析法,这时原整体中相互作用的内力就会变为各个独立物体的外力。

  3、注意事项:

  正确分析物体的受力情况,是解决力学问题的基础和关键,在具体操作时应注意:

  (1)弹力和摩擦力都是产生于相互接触的两个物体之间,因此要从接触点处判断弹力和摩擦力是否存在,如果存在,则根据弹力和摩擦力的方向,画好这两个力。

  (2)画受力图时要逐一检查各个力,找不到施力物体的力一定是无中生有的同时应只画物体的受力,不能把对象对其它物体的施力也画进去。

高中物理知识点10

  牛顿第三定律:

  (1)内容:

  两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。

  (2)理解:

  ①作用力和反作用力的同时性。它们是同时产生,同时变化,同时消失,不是先有作用力后有反作用力。

  ②作用力和反作用力的性质相同。即作用力和反作用力是属同种性质的力。

  ③作用力和反作用力的相互依赖性:它们是相互依存,互以对方作为自己存在的`前提。

  ④作用力和反作用力的不可叠加性。作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两力的作用效果不能相互抵消。

高中物理知识点11

  功、功率、机械能和能源

  1.做功两要素:力和物体在力的方向上发生位移

  2.功:功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(J)

  3.物体做正功负功问题(将α理解为F与V所成的角,更为简单)

  (1)当α=90度时,W=0.这表示力F的方向跟位移的方向垂直时,力F不做功,

  如小球在水平桌面上滚动,桌面对球的支持力不做功。

  (2)当α<90度时,cosα>0,W>0.这表示力F对物体做正功。

  如人用力推车前进时,人的推力F对车做正功。

  (3)当α大于90度小于等于180度时,cosα<0,W<0.这表示力F对物体做负功。

  如人用力阻碍车前进时,人的推力F对车做负功。

  一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。

  例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。说了“克服”,就不能再说做了负功

  4.动能是标量,只有大小,没有方向。表达式

  5.重力势能是标量,表达式

  (1)重力势能具有相对性,是相对于选取的参考面而言的。因此在计算重力势能时,应该明确选取零势面。

  (2)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。

  6.动能定理:

  W为外力对物体所做的总功,m为物体质量,v为末速度,为初速度

  解答思路:

  ①选取研究对象,明确它的运动过程。

  ②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的.代数和。

  ③明确物体在过程始末状态的动能和。

  ④列出动能定理的方程。

  7.机械能守恒定律:(只有重力或弹力做功,没有任何外力做功。)

  解题思路:

  ①选取研究对象----物体系或物体

  ②根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。

  ③恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。

  ④根据机械能守恒定律列方程,进行求解。

  8.功率的表达式:,或者P=FV功率:描述力对物体做功快慢;是标量,有正负

  9.额定功率指机器正常工作时的最大输出功率,也就是机器铭牌上的标称值。

  实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。

  10、能量守恒定律及能量耗散

高中物理知识点12

  力学部分:

  1、基本概念:

  力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速

  2、基本规律:

  匀变速直线运动的基本规律(12个方程);

  三力共点平衡的特点;

  牛顿运动定律(牛顿第一、第二、第三定律);

  万有引力定律;

  天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);

  动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变化的关系);

  动量守恒定律(四类守恒条件、方程、应用过程);

  功能基本关系(功是能量转化的量度)

  重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);

  功能原理(非重力做功与物体机械能变化之间的关系);

  机械能守恒定律(守恒条件、方程、应用步骤);

  简谐运动的基本规律(两个理想化模型一次全振动四个过程五个量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;

  简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;

  3、基本运动类型:

  运动类型受力特点备注

  直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析

  匀变速直线运动同上且所受合外力为恒力1.匀加速直线运动

  2.匀减速直线运动

  曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向

  合外力指向轨迹内侧

  (类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解

  匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心

  (合外力充当向心力)一般圆周运动的受力特点

  向心力的受力分析

  简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析

  4、基本:

  力的合成与分解(平行四边形、三角形、多边形、正交分解);

  三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法);

  对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的分析方法—假设法);

  处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t图像);

  解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);

  针对简谐运动的对称法、针对简谐波图像的描点法、平移法

  5、常见题型:

  合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。

  斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括物体除受常规力之外多一个某方向的力的分析);(3)整体(斜面和物体)受力情况及运动情况的分析(整体法、个体法)。

  动力学的两大类问题:(1)已知运动求受力;(2)已知受力求运动。

  竖直面内的圆周运动问题:(注意向心力的分析;绳拉物体、杆拉物体、轨道内侧外侧问题;最高点、最低点的特点)。

  人造地球卫星问题:(几个近似;黄金变换;注意公式中各物理量的物理意义)。

  动量机械能的综合题:

  (1)单个物体应用动量定理、动能定理或机械能守恒的题型;

  (2)系统应用动量定理的题型;

  (3)系统综合运用动量、能量观点的'题型:

  ①碰撞问题;

  ②爆炸(反冲)问题(包括静止原子核衰变问题);

  ③滑块长木板问题(注意不同的初始条件、滑离和不滑离两种情况、四个方程);

  ④子弹射木块问题 高中英语;

  ⑤弹簧类问题(竖直方向弹簧、水平弹簧振子、系统内物体间通过弹簧相互作用等);

  ⑥单摆类问题:

  ⑦工件皮带问题(水平传送带,倾斜传送带);

  ⑧人车问题;人船问题;人气球问题(某方向动量守恒、平均动量守恒);

  机械波的图像应用题:

  (1)机械波的传播方向和质点振动方向的互推;

  (2)依据给定状态能够画出两点间的基本波形图;

  (3)根据某时刻波形图及相关物理量推断下一时刻波形图或根据两时刻波形图求解相关物理量;

  (4)机械波的干涉、衍射问题及声波的多普勒效应。

  电磁学部分:

  1、基本概念:

  电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速

  2、基本规律:

  电量平分原理(电荷守恒)

  库伦定律(注意条件、比较-两个近距离的带电球体间的电场力)

  电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场)

  电场力做功的特点及与电势能变化的关系

  电容的定义式及平行板电容器的决定式

  部分电路欧姆定律(适用条件)

  电阻定律

  串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系)

  焦耳定律、电功(电功率)三个表达式的适用范围

  闭合电路欧姆定律

  基本电路的动态分析(串反并同)

  电场线(磁感线)的特点

  等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点

  常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管)

  电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、)

  电动机的三个功率(输入功率、损耗功率、输出功率)

  电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、截距的物理意义)

  安培定则、左手定则、楞次定律(三条表述)、右手定则

  电磁感应的判定条件

  感应电动势大小的计算:法拉第电磁感应定律、导线垂直切割磁感线

  通电自感现象和断电自感现象

  正弦交流电的产生原理

  电阻、感抗、容抗对交变电流的作用

  变压器原理(变压比、变流比、功率关系、多股线圈问题、原线圈串、并联用电器问题)

  3、常见仪器:

  示波器、示波管、电流计、电流表(磁电式电流表的原理)、电压表、定值电阻、电阻箱、滑动变阻器、电动机、电解槽、多用电表、速度选择器、质普仪、回旋加速器、磁流体发电机、电磁流量计、日光灯、变压器、自耦变压器。

  4、实验部分:

  (1)描绘电场中的等势线:各种静电场的模拟;各点电势高低的判定;

  (2)电阻的测量:①分类:定值电阻的测量;电源电动势和内电阻的测量;电表内阻的测量;②方法:伏安法(电流表的内接、外接;接法的判定;误差分析);欧姆表测电阻(欧姆表的使用方法、操作步骤、读数);半偏法(并联半偏、串联半偏、误差分析);替代法;*电桥法(桥为电阻、灵敏电流计、电容器的情况分析);

  (3)测定金属的电阻率(电流表外接、滑动变阻器限流式接法、螺旋测微器、游标卡尺的读数);

  (4)小灯泡伏安特性曲线的测定(电流表外接、滑动变阻器分压式接法、注意曲线的变化);

  (5)测定电源电动势和内电阻(电流表内接、数据处理:解析法、图像法);

  (6)电流表和电压表的改装(分流电阻、分压电阻阻值的计算、刻度的修改);

  (7)用多用电表测电阻及黑箱问题;

  (8)练习使用示波器;

  (9)仪器及连接方式的选择:①电流表、电压表:主要看量程(电路中可能提供的最大电流和最大电压);②滑动变阻器:没特殊要求按限流式接法,如有下列情况则用分压式接法:要求测量范围大、多测几组数据、滑动变阻器总阻值太小、测伏安特性曲线;

  (10)传感器的应用(光敏电阻:阻值随光照而减小、热敏电阻:阻值随温度升高而减小)

  5、常见题型:

  电场中移动电荷时的功能关系;

  一条直线上三个点电荷的平衡问题;

  带电粒子在匀强电场中的加速和偏转(示波器问题);

  全电路中一部分电路电阻发生变化时的电路分析(应用闭合电路欧姆定律、欧姆定律;或应用“串反并同”;若两部分电路阻值发生变化,可考虑用极值法);

  电路中连接有电容器的问题(注意电容器两极板间的电压、电路变化时电容器的充放电过程);

  通电导线在各种磁场中在磁场力作用下的运动问题;(注意磁感线的分布及磁场力的变化);

  通电导线在匀强磁场中的平衡问题;

  带电粒子在匀强磁场中的运动(匀速圆周运动的半径、周期;在有界匀强磁场中的一段圆弧运动:找圆心-画轨迹-确定半径-作辅助线-应用几何求解;在有界磁场中的运动时间);

  闭合电路中的金属棒在水平导轨或斜面导轨上切割磁感线时的运动问题;

  两根金属棒在导轨上垂直切割磁感线的情况(左右手定则及楞次定律的应用、动量观点的应用);

  带电粒子在复合场中的运动(正交、平行两种情况):

  ①.重力场、匀强电场的复合场;

  ②.重力场、匀强磁场的复合场;

  ③.匀强电场、匀强磁场的复合场;

  ④.三场合一。

高中物理知识点13

  力是物体间的相互作用

  1.力的国际单位是牛顿,用N表示;

  2.力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;

  3.力的示意图:用一个带箭头的线段表示力的方向;

  4.力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;

  重力:由于地球对物体的吸引而使物体受到的力;

  a.重力不是万有引力而是万有引力的一个分力;

  b.重力的方向总是竖直向下的(垂直于水平面向下)

  c.测量重力的仪器是弹簧秤;

  d.重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;

  弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;

  a.产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;

  b.弹力包括:支持力、压力、推力、拉力等等;

  c.支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;

  d.在弹性限度内弹力跟形变量成正比;F=Kx

  摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;

  a.产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;

  b.摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;

  c.滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;

  d.静摩擦力的大小等于使物体发生相对运动趋势的外力;

  合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;

  a.合力与分力的作用效果相同;

  b.合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力;

  c.合力大于或等于二分力之差,小于或等于二分力之和;

  d.分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法);

  矢量

  矢量:既有大小又有方向的物理量(如:力、位移、速度、加速度、动量、冲量)

  标量:只有大小没有方向的物力量(如:时间、速率、功、功率、路程、电流、磁通量、能量)

  直线运动

  物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;

  (1)在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;

  (2)在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向;

  (3)处于平衡状态的物体在任意两个相互垂直方向的合力为零;

  机械运动:

  一物体相对其它物体的位置变化。

  1.参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);

  2.质点:只考虑物体的质量、不考虑其大小、形状的物体;

  (1)质点是一理想化模型;

  (2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时;

  如:研究地球绕太阳运动,火车从北京到上海;

  3.时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;

  例:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;

  4.位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;

  (1)位移为零、路程不一定为零;路程为零,位移一定为零;

  (2)只有当质点作单向直线运动时,质点的位移才等于路程;

  (3)位移的国际单位是米,用m表示

  5.位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;

  (1)匀速直线运动的位移图像是一条与横轴平行的直线;

  (2)匀变速直线运动的位移图像是一条倾斜直线;

  (3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;

  6.速度是表示质点运动快慢的物理量

  (1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;

  (2)速率只表示速度的大小,是标量;

  7.加速度:是描述物体速度变化快慢的物理量;

  (1)加速度的定义式:a=vt-v0/t

  (2)加速度的大小与物体速度大小无关;

  (3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;

  (4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;

  (5)加速度是矢量,加速度的方向和速度变化方向相同;

  (6)加速度的国际单位是m/s2

  匀变速直线运动

  1.速度:匀变速直线运动中速度和时间的关系:vt=v0+at

  注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;

  (1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;

  (2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;

  2.位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at2

  注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值;

  3.推论:2as=vt2-v02

  4.作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植:s2-s1=aT2

  5.初速度为零的匀加速直线运动:前1秒,前2秒,……位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒……的位移与时间的关系是:位移之比等于奇数比;

  自由落体运动

  只在重力作用下从高处静止下落的物体所作的运动。

  1.位移公式:h=1/2gt2

  2.速度公式:vt=gt

  3.推论:2gh=vt2

  牛顿定律

  1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。

  a.只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;

  b.力是该变物体速度的原因;

  c.力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)

  d力是产生加速度的原因;

  2.惯性:物体保持匀速直线运动或静止状态的'性质叫惯性。

  a.一切物体都有惯性;

  b.惯性的大小由物体的质量唯一决定;

  c.惯性是描述物体运动状态改变难易的物理量;

  3.牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。

  a.数学表达式:a=F合/m;

  b.加速度随力的产生而产生、变化而变化、消失而消失;

  c.当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。

  d.力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N;

  4.牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;

  a.作用力和反作用力同时产生、同时变化、同时消失;

  b.作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上;

  曲线运动·万有引力

  质点的运动轨迹是曲线的运动

  1.曲线运动中速度的方向在时刻改变,质点在某一点(或某一时刻)的速度方向是曲线在这一点的切线方向

  2.质点作曲线运动的条件:质点所受合外力的方向与其运动方向不在同一条直线上;且轨迹向其受力方向偏折;

  3.曲线运动的特点

  曲线运动一定是变速运动;

  曲线运动的加速度(合外力)与其速度方向不在同一条直线上;

  4.力的作用

  力的方向与运动方向一致时,力改变速度的大小;

  力的方向与运动方向垂直时,力改变速度的方向;

  力的方向与速度方向既不垂直,又不平行时,力既搞变速度大小又改变速度的方向;

  运动的合成与分解

  1.判断和运动的方法:物体实际所作的运动是合运动

  2.合运动与分运动的等时性:合运动与各分运动所用时间始终相等;

  3.合位移和分位移,合速度和分速度,和加速度与分加速度均遵守平行四边形定则;

  平抛运动

  被水平抛出的物体在在重力作用下所作的运动叫平抛运动。

  1.平抛运动的实质:物体在水平方向上作匀速直线运动,在竖直方向上作自由落体运动的合运动;

  2.水平方向上的匀速直线运动和竖直方向上的自由落体运动具有等时性;

  3.求解方法:分别研究水平方向和竖直方向上的二分运动,在用平行四边形定则求和运动;

  养成良好的物理学习习惯

  第一,要有清晰的学习思路。

  首先要做好课前预习,这样就知道自己哪里不会、哪里掌握的不牢,这样,跟着老师的思路学习一遍,就能掌握十之八、九。预习之所以有效,就是因为通过预习理清了学习思路,明确自己的学习目标,在老师的帮助下,就能沿着正确的思路走,达到熟练掌握知识的目的。

  第二,深挖课本,提炼精华。

  书上有内容的引入,推导,吸取书中的精华。这个过程,就是所谓,“把书读薄了”,然后,再对理解的内容进行扩展,推论,变成自己的理解,这就是所谓“把书读厚了”的过程,在脑子里,书从厚到薄再到厚,就是两次不同层次的深化。

  第三,不要忽略复习的影响。

  物理作为理科类,知识都是一环扣一环,一定要定时查漏补缺。如果前面的知识有漏洞,这样就很容易影响到后面知识内容的学习。学习之后,可以通过做题,培养解题的感觉,对上课所学知识进行归纳,加深印象。根据艾宾浩斯遗忘曲线,建议在学完知识的两三天后,一般我们可以选择周末,进行知识回顾,真正弄懂所学知识,而且还要学会计算。一旦形成了体系,脑中建立了模型,比如板块模型,带点杆模型,复合场模型。考试中,就信手拈来,行云流水。

  第四,结成学习帮扶小组。

  和同学一起探讨,一起学习,也能一起进步,通过帮扶小组,不仅能让知识更扎实,同时也丰富自己的学习生活,让学习变得更有趣。

  物理学习方法与技巧有哪些

  一、培养学习兴趣

  爱因斯坦说过:兴趣是最好的老师。作为刚刚向物理学宫迈进的学生,首先需要的是兴趣。自然界万物的运动和变化,以及人们创造的一切,都是我们兴趣的取之不竭的源泉。让我们在自己的心灵中点燃起强烈的求知的火花,以浓厚的兴趣进入物理的大千世界,在学习中体验自己智慧的力量,体验求得知识的欢乐。

  学好初中物理其实就是探索实践乃至宇宙的第一步,不论是力学还是电磁学都充满了科学的味道。在我们的周围,大至整个宇宙,小至我们身边,无时无刻不在发生种种的物理现象。只有对物理保持浓厚的学习兴趣,才能真正学好物理。

  二、善于思考

  没有积极的思考、不可能真正理解物理概念和原理。我们从初中开始,就要养成积极动脑筋想问题的习惯。

  要理解和掌握好物理概念,就要研究和思考这个概念是怎样引入的?定义如何?有什么物理意义?例如对于电阻,要搞清楚:根据什么实验事实而引入电阻概念?电阻的定义是什么?它的单位是怎样规定的?怎样测量导体的电阻?等等。

  有比较才能鉴别。应用对比法,是我们在学习物理过程中,分清一些概念和规律的区别,使它们不会混淆起来,从而正确地理解这些概念和规律的一种好方法。

  三、重视物理实验

  实验,在学习物理学中是非常重要的一环,它能加深我们对物理知识的理解和培养能力。在实验中应通过自己动手,边观察、边分析、边总结,解决下面的问题:

  1.通过实验,对许多抽象的物理概念和定律有丰富生动的感性认识,从而易于理解。如物质的三态变化,从固态到液态要吸热,晶体熔解时温度不变,这些现象通过苯的熔解实验后,将深信不疑,印象深刻。

  2.通过动手操作,更仔细地认识各种物理仪器、装置的构造和性能,知道怎样正确使用常用仪器。物理实验使用的各种基本仪表和装置,就是今后工农业生产和科研中使用的各种仪器装置的基础,今天学会了操作,将来就有了操作的技能基础。

  3.在实验中掌握一些基本测量方法。例如测定细小金属丝的直径,采用多绕很多圈来测量的"以大量小"法;在测定未知电阻值时可以用"替代法","比较法";为了减少实验误差进行多次测量求平均值等等。这些实验的基本方法都将大大提高我们的实验能力。

  4.在实验中应养成良好的实验习惯。遵守实验室纪律,爱护仪器;实验课前做好预习;实验时认真操作,细心观察,忠实记录,按时完成;保持清洁,做好收尾工作,完成实验报告。养成这些良好的实验习惯和品质,将来才可能成为一个优秀的生产者和科学工作者。

  四、课堂听讲是关键

  听课是学习物理的关键环节,那么,该怎么听课呢,上课的时候又该听什么,其实大家只需要注意这五点,物理知识基本就能掌握了。

  ①知识是怎样引出的。

  ②知识是怎样得来的(注重研究过程)。

  ③知识内容是什么。

  ④所学知识概念怎样理解。

  ⑤所学知识在生活、生产中有什么应用。

  五、精读课本

  我们所学知识基本上都来自课本,所以通过读书才能对知识的来龙去脉有全面的了解。读书的过程就是对物理知识加深理解的过程。要同时阅读几本参考书,通过对比,对某一知识加深理解。在读书时还应对重点知识、概念、规律、定义、公式在理解的基础上强化记忆。

  六、建立知识体系

  在读书基础上打破章节界限,按知识条块归类,并建立相关的知识体系,将各知识点之间的内在联系弄清楚,由点到面形成知识网络。建立知识体系的过程也就是提高综合能力的过程,也是使物理复习质量升华的过程。

  物理高效复习法简介

  首先,要理解基本概念,掌握基本公式。

  物理作为理科科目在期末复习过程中要重视基础。如果基础没有打牢,再出色的成绩也是靠不住的,在复习的过程中,我们要把课本上的基本概念、公式、实验在理解的基础上,全部看一遍,对于不完全掌握的知识点你一定要在考试前弄懂、弄会。通常情况下,成绩中等的同学大部分是基础不牢,建议大家将重点放在课本上。

  第二,结合错题本进行专项复习

  错题本就是汇集了我们一学期所有错题的集合,这里能真实的反映出我们知识的薄弱点在哪里,把错题本上的错题再有选择的做一遍,看一下还错在哪里,然后进行重点修改,这样可以查漏补缺,用最快的速度让自己补齐短板。

  专项练习中我们也可以对一些常考的题型进行重点练习,有一些题的题型在变,但是解题思路不变,这样我们就能以不变应万变,不仅能够对所学提醒进行归纳整理,也能帮助我们提升复习效果。

  第三,熟悉实验流程,掌握实验原理。

  物理是一门实验性非常强的学科,我们在平时的学习、考试中总会遇到这样或者那样的实验,千万不要以为这些实验没用,一个完整的实验要从实验筹划开始、到实验器材准备、实验原理、实验过程、实验结果、实验报告,整个过程都有可能成为考试的考点,因此在期末考试前我们将本学期学到的物理实验进行系统梳理,达到每提到一个实验都会在脑海中形成一个流程,这样实验部分的分数我们就能得到大半。

  此外,物理的计算要依赖数学,特别是一些解题方法,和数学有高度的类似,因此,想要学好物理,必须学好数学。

  怎么加深对物理实验的理解

  一要提前看。在实验之前,我们就要提前通过课本了解实验的目的、用到的器材及使用方法、涉及到的原理,同时要仔细阅读教材上的实验步骤,争取做到离开课本也能做实验。

  二要规范做。做实验时,要严格遵守操作流程,严格按照教材的操作步骤认真执行,不能自由发挥,随心所欲。如有安全隐患,要做好安全防范措施。

  三要总结好。物理课上真正做实验的机会非常少,所以一定要认真归纳、总结。详细记录实验过程、现象,以及最后得出的实验结论。

  目前,初中涉及到的实验有天平测重量、弹簧测力计测力大小、压力与压强的实验、杠杆实验、电流电压的实验、光的折射和反射实验等等,每一个实验都是通过一个物理现象来说明一个物理原理。物理实验中常见的物理实验方法总计有4种,这里为大家简单介绍一下:

  1、控制变量法,这是最常见的一种实验方法,通过更改某一个变量,来改变实验结果,从而达到实验目的。

  2、图像法,通过制作表格或者是画图的方式,来直观的表示实验过程、结果,比如:电压、电流的实验、或者是压力、摩擦力等实验。

  3、转换法,通过对实验现象的转化,变得更加通俗易懂,比如:磁场的实验、分子扩散的实验。

  4、类比法,有一些实验如果用其他的事物代替一下会更加的形象,比如:水流VS电流,等效电路等。

高中物理知识点14

  知识点:力和运动

  受力分析、物体的平衡及其条件,是每年必考知识点。

  预计在2014年高考中,本专题内容仍然是高考命题的重点和热点,从近几年的试题难度看,本专题单独命题,难度可能不大,重在对基础知识与基本应用的考查,其中卫星导航、航天工程、宇宙探测、体育运动、科技与生活热点问题要特别关注。

  知识点:动量和能量

  安徽省高考对本专题的知识点考查频率非常高,每年必考,对动能定理、机械能守恒定律、功能关系考查难度较大。

  “动量和能量观点是贯穿整个物理学最基本的观点,动量守恒定律、能量守恒定律是自然界中普遍适用的基本规律,涉及面广、综合性强、能力要求高,多年的压轴题均与本专题知识有关。”杨坤预计,在2014年高考中,会继续延续近两年的命题特点,一种可能是以功——功率、动能定理和机械能守恒定律为考查热点,主要以选择题的形式出现,考查考生对基本概念、规律的掌握情况和初步应用的能力。另一种可能是与牛顿运动定律、曲线运动、电场和电磁感应等知识综合起来考查,题型以计算题为主。考题紧密联系生产生活、现代科技等问题,如传送带的功率消耗、站台的节能设计、弹簧中的能量、碰撞中的动量守恒问题等。

  知识点:带电粒子在电场和磁场中的运动

  从历年来试题的难度上看,大多属于中等难度和较难的题,考题常以科学技术的具体问题为背景,考查从实际问题中获取并处理信息,解决实际问题的能力。

  计算题主要考查带电粒子在电场、磁场中的运动和在复合场中的运动,特别是带电粒子在有界磁场、组合场中的运动,涉及运动轨迹的几何分析和临界分析,考查的可能性较大。

  “20xx年高考理综物理试题仍将突出对电场和磁场中运动的考查,考查形式既可以是选择题也可以是计算题,选择题用来考查场的描述和性质、场力。” 杨坤分析,计算题主要考查带电粒子在电场、磁场中的运动和在复合场中的运动,特别是带电粒子在有界磁场、组合场中的运动,涉及运动轨迹的几何分析和临界分析,考查的可能性较大。其中电场和磁场知识与生产技术、生活实际、科学研究相结合,如示波管、质谱仪、回旋加速器、速度选择器和磁流体发电机等物理模型的应用问题要特别注意。

  知识点:电磁感应和电路的分析、计算

  在2014年高考中对本专题知识的考查可能是与其他知识点进行综合考查,突出考查电磁感应、电路等部分内容。

  考查的热点内容可能是滑轨类问题、线框穿越有界匀强磁场问题、电磁感应图像问题和电磁感应中的.能量问题。

  从近四年高考试卷知识点分布来看,高考对本专题的内容考查频率比较高,特别是电磁感应部分,每年必考。“对本专题知识点的考查,安徽省高考试题常以选择题的形式出现,但也有以计算题的形式出现的。”杨坤分析,对电路的考查则经常是与实验考查相结合,对串并联电路考查较浅,对交流电的考查相对来说较少而且偏易,对电磁感应的考查相对来说难度偏大,而且经常与其他知识点进行综合考查,不仅考查考生对基础知识和基本规律的掌握,还考查考生对基础知识和基本规律的理解与应用。

  “预计在2014年高考中对本专题知识的考查可能是与其他知识点进行综合考查,突出考查电磁感应、电路等部分内容。”杨坤老师强调,考查的热点内容可能是滑轨类问题、线框穿越有界匀强磁场问题、电磁感应图像问题和电磁感应中的能量问题,“在考试说明的题例中增加了滑轨类问题的实例,这或许是一个信号,希望能引起大家的注意。”

高中物理知识点15

  1.电路的组成:电源、开关、用电器、导线。

  2.电路的三种状态:通路、断路、短路。

  3.电流有分支的是并联,电流只有一条通路的是串联。

  4.在家庭电路中,用电器都是并联的。

  5.电荷的定向移动形成电流(金属导体里自由电子定向移动的方向与电流方向相反)。

  6.电流表不能直接与电源相连,电压表在不超出其测量范围的情况下可以。

  7.电压是形成电流的原因。

  8.安全电压应低于24V。

  9.金属导体的电阻随温度的升高而增大。

  10.影响电阻大小的`因素有:材料、长度、横截面积、温度(温度有时不考虑)。

  11.滑动变阻器和电阻箱都是靠改变接入电路中电阻丝的长度来改变电阻的。

  12.利用欧姆定律公式要注意I、U、R三个量是对同一段导体而言的。

  13.伏安法测电阻原理:R=伏安法测电功率原理:P=UI

  14.串联电路中:电压、电功和电功率与电阻成正比

  15.并联电路中:电流、电功和电功率与电阻成反比

  16."220V100W"的灯泡比"220V40W"的灯泡电阻小,灯丝粗。

  1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。

  2、电势φ

  (1)定义:电荷在电场中某一点的电势能Ep与电荷量的比值。

  (2)定义式:φ——单位:伏(V)——带正负号计算

  (3)特点:

  电势具有相对性,相对参考点而言。但电势之差与参考点的选择无关。

  电势一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。

  电势的大小由电场本身决定,与Ep和q无关。

  电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。

  (4)电势高低的判断方法

  根据电场线判断:沿着电场线电势降低。φA>φB

  根据电势能判断:

  正电荷:电势能大,电势高;电势能小,电势低。

  负电荷:电势能大,电势低;电势能小,电势高。

  结论:只在电场力作用下,静止的电荷从电势能高的地方向电势能低的地方运动。

【高中物理知识点】上海花千坊相关的文章:

高中物理知识点11-09

高中物理知识点的总结08-02

高中物理知识点归纳05-21

高中物理选修知识点01-22

北京高中物理知识点02-07

高中物理知识点口诀08-02

高中物理力学知识点12-18

高中物理变阻器知识点01-06

高中物理受力分析知识点10-14

高中物理知识点与公式总结11-09