- 相关推荐
青岛版六年级上册数学知识点
在平平淡淡的学习中,说到知识点,大家是不是都习惯性的重视?知识点有时候特指教科书上或考试的知识。想要一份整理好的知识点吗?下面是小编收集整理的青岛版六年级上册数学知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
六年级上册数学知识点1
一、认识圆
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。它到圆上任意一点的距离都相等。
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。
7、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r =
8、轴对称图形:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)
9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形
只有3条对称轴的图形是:等边三角形
只有4条对称轴的图形是:正方形;
有无数条对称轴的图形是:圆、圆环。
二、圆的周长
1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。
2、圆周率实验:
在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。在计算时,一般取π ≈ 3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式:C= πd d = C ÷π
或C=2π r r = C ÷ 2π
5、在一个正方形里画一个的圆,圆的直径等于正方形的边长。
在一个长方形里画一个的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:
(1)周长的一半:等于圆的周长÷2计算方法:2π r ÷ 2即π r
(2)半圆的周长:等于圆的周长的一半加直径。计算方法:πr+2r
三、圆的面积
1、圆的面积:圆所占平面的大小叫做圆的面积。用字母S表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:
(1)、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。
(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。
(3)、拼出的图形与圆的周长和半径的关系。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
因为:长方形面积=长×宽
所以:圆的面积=圆周长的一半×圆的半径
S圆= πr × r
圆的面积公式:S圆= πr2
4、环形的面积:
一个环形,外圆的半径是R,内圆的半径是r。(R=r+环的宽度。)
S环= πR2-πr2或
环形的面积公式:S环= π(R2-r2)。
5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小的倍数是这倍数的平方倍。例如:
在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。
6、两个圆:半径比=直径比=周长比;而面积比等于这比的平方。例如:
两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9
7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π
8、当长方形,正方形,圆的周长相等时,圆面积,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。
9、确定起跑线:
(1)、每条跑道的长度=两个半圆形跑道合成的圆的周长+两个直道的长度。
(2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同)
(3)、每相邻两个跑道相隔的距离是:2×π×跑道的宽度
(4)、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。
11、常用各π值结果:
π = 3.14
2π = 6.28
3π = 9.42
5π = 15.7
6π = 18.84
7π = 21.98
9π = 28.26
10π = 31.4
16π = 50.24
36π = 113.04
64π = 200.96
96π = 301.44
六年级数学常考点
数与计算
(1)分数的乘法和除法,分数乘法的意义,分数乘法,乘法的运算定律推广到分数,倒数,分数除法的意义,分数除法。
(2)分数四则混合运算,分数四则混合运算。
(3)百分数,百分数的意义和写法,百分数和分数、小数的互化。
比和比例
比的意义和性质,比例的意义和基本性质,解比例,成正比例的量和成反比例的量。
几何初步知识
圆的认识,圆周率,画圆,圆的周长和面积,扇形的认识,轴对称图形的初步认识,圆柱的认识,圆柱的表面积和体积,圆锥的认识,圆锥的体积,球和球的半径、直径的初步认识。
数学小数的分类
(1)有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7 、 25.3 、 0.23都是有限小数。
(2)无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33 …… 3.1415926 ……
(3)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
(4)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555 …… 0.0333 …… 12.109109 ……;一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99 ……的循环节是“ 9 ”,0.5454 ……的循环节是“ 54 ” 。
六年级上册数学知识点2
小数
1、小数的意义:把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2、一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。
3、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
分数
1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
3、分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
5、分子分母是互质数的分数叫做最简分数。
6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
约分和通分
1、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
数学0的性质
1、0既不是正数也不是负数,而是介于—1和+1之间的整数。
2、0的相反数是0,即—0=0。
3、0的绝对值是其本身。
4、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。
5、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
6、0的正数次方等于0,0的负数次方无意义,因为0没有倒数。
7、除0外,任何数的的0次方等于1。
8、0也不能做除数、分数的分母、比的后项。
9、0的阶乘等于1。
小学数学运算定律和性质知识点
加法:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)
变式:(a—b)×c=a×c—b×c或a×c—b×c=(a—b)×c
减法:减法性质:a—b—c=a—(b+c)
除法:除法性质:a÷b÷c=a÷(b×c)
六年级上册数学知识点3
第一单元分数乘法
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c<a(b≠0)。< p="">
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1,则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1。
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。带分数的倒数小于1。
(六)分数乘法应用题——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
3、什么是速度?
速度是单位时间内行驶的路程。
速度=路程÷时间
时间=路程÷速度
路程=速度×时间
单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
4、求甲比乙多(少)几分之几?
多:(甲-乙)÷乙
少:(乙-甲)÷乙
1、什么是数对?
数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。经度和纬度就是这个原理。
2、确定物体位置的方法:
(1)先找观测点;(2)再定方向(看方向夹角的度数);(3)最后确定距离(看比例尺)。
描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
相对位置:东-西;南-北;南偏东-北偏西。
第三单元分数的除法
一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:
①除以大于1的数,商小于被除数:a÷b=c,当b>1时,c<a。< p="">
②除以小于1的数,商大于被除数:a÷b=c,当b<1时,c>a。(a≠0,b≠0)
③除以等于1的数,商等于被除数:a÷b=c,当b=1时,c=a。
三、分数除法混合运算
1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:
①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
(a±b)÷c=a÷c±b÷c
第四单元比
比:两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
连比,如:3:4:5读作:3比4比5。
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20=12÷20=0.6
12∶20读作:12比20。
区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)用比的前项和后项同时除以它们的最大公约数。
(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:
除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算。
分数:分子分数线(—)分母(不能为0)分数的基本性质分数是一个数。
比:前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系。
商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数除法和比的应用
1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)
(1)甲是乙的几分之几?
甲=乙×几分之几
乙=甲÷几分之几
几分之几=甲÷乙
(2)甲比乙多(少)几分之几?
4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
5、画线段图:
(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
两个量的关系画两条线段图,部分和整体的关系画一条线段图。
第五单元圆
一、圆的特征
1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r或r=d÷2
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无条对称轴的图形:圆,圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:
围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π =周长÷直径≈3.14。
所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr。
圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
4、半圆周长=圆周长一半+直径= πr+d
三、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
长方形面积=长×宽
所以,圆的面积=圆的周长的一半(πr)×圆的半径(r)。
S圆=πr×r=πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
4、环形面积=大圆–小圆=πR2-πr2
扇形面积=πr2×n÷360(n表示扇形圆心角的度数)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
一个圆的半径增加a厘米,周长就增加2πa厘米。
一个圆的直径增加b厘米,周长就增加πb厘米。
6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。
7、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。
注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。
注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
二、百分数应用题
1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:(甲-乙)÷乙
求乙比甲少百分之几:(甲-乙)÷甲
3、求一个数的百分之几是多少。一个数(单位“1”)×百分率
4、已知一个数的百分之几是多少,求这个数。
部分量÷百分率=一个数(单位“1”)
5、折扣、打折的意义:几折就是十分之几也就是百分之几十
折扣、成数=几分之几、百分之几、小数
八折=八成=十分之八=百分之八十=0.8
八五折=八成五=十分之八点五=百分之八十五=0.85
五折=五成=十分之五=百分之五十=0.5=半价
6、利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间
税后利息=利息-利息的应纳税额=利息-利息×5%
注:国债和教育储蓄的利息不纳税
7、百分数应用题型分类
(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几
(2)求甲比乙多百分之几——(甲-乙)÷乙×100%
(3)求甲比乙少百分之几——(乙-甲)÷乙×100%
第七单元扇形统计图的意义
1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、常用统计图的优点:
(1)条形统计图直观显示每个数量的多少。
(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)扇形统计图直观显示部分和总量的关系。
第八单元数学广角--数与形
2+4+6+8+10+12+14+16+18+20=(110)
规律:从2开始的n个连续偶数的和等于n×(n+1)。
六年级上册数学知识点4
1. 位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。
一般先看横的数字,再看竖的数字,注意中间是逗号
2.分数乘法的意义:一个数×分数
分数×一个数
3.乘积是1的两个数互为倒数 1的倒数是1 0没有倒数
4.除以一个不等于0的数,等于乘这个数的倒数
5.两个数相除又叫做两个数的比。比值通常用分数表示,也可以用分数或整数
6.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变
7.圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14
8.有关圆的公式:
C= 兀d = 2兀r S =兀r 2
d=C÷兀 d=2 r r = d÷2 r = C÷兀÷2
圆环的面积S = 兀 R 2-兀 r 2
9.原价×折扣=现价 营业额×税率=应纳税额 本金×利率×时间=利息
10.条形统计图:可以清楚的看出数据的多少
折线统计图:可以清楚的看出数据的增减变化趋势
扇形统计图:可以清楚的看出各部分同总数之间的关系
六年级数学下册知识点
一、比例
1、比例的基本性质是在比例里两内项积等于两外项积。
2、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:
Y : x = k(一定)
3、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:
Xy=k(一定)
二、数与代数(复习)
1、自然数和0都是整数。
2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。
3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
6:倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。
7、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。
8、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。
9、能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。
10、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
11、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
12、1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。
13、每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
14、几个数公有的因数,叫做这几个数的公因数。其中的一个,叫做这几个数的公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的公因数。
15、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
16、如果较小数是较大数的因数,那么较小数就是这两个数的公因数。
17、如果两个数是互质数,它们的公因数就是1。
18、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。
19、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
20、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数
1、小数的意义 :把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2、一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。
3、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
(三)分数
1、分数的意义 :把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
3、分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
5、分子分母是互质数的分数叫做最简分数。
6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四) 约分和通分
1、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
三 性质和规律
1、商不变的规律 :商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
2、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
3、小数点位置的移动引起小数大小的变化
(1)小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……
(2)小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……
(3)小数点向左移或者向右移位数不够时,要用“0"补足位。
(五)分数的基本性质
分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
(六)分数与除法的关系
1. 被除数÷除数= 被除数/除数
2. 因为零不能作除数,所以分数的分母不能为零。
3. 被除数 相当于分子,除数相当于分母。
四 运算的意义
(一)整数四则运算
加数+加数=和
一个加数=和-另一个加数
被减数-减数=差
被减数=减数+差
减数=被减数-差
一个因数× 一个因数 =积
一个因数=积÷另一个因数
被除数÷除数=商
除数=被除数÷商
被除数=商×除数
(二)运算定律
1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
6. 减法的性质:
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。
(三)运算法则
1. 整数加法计算法则:
相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2. 整数减法计算法则:
相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3. 整数乘法计算法则:
先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
4. 整数除法计算法则:
先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。
5. 小数乘法法则:
先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
6. 除数是整数的小数除法计算法则:
先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
7. 除数是小数的除法计算法则:
先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
8. 同分母分数加减法计算方法:
同分母分数相加减,只把分子相加减,分母不变。
9. 异分母分数加减法计算方法:
先通分,然后按照同分母分数加减法的的法则进行计算。
10. 带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。
整
(一)小数乘除法的意义及法则
1. 小数乘法意义:
小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。例:3.5×4表示4个3.5相加是多少。或表示3.5的4倍是多少。
一个数乘小数的意义与整数乘法的意义不同,是求这个数的十分之几,百分之几,千分之几……。例:25×0.17,表示25的百分之十七是多少。
2. 小数除法的意义
小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。例: 表示已知两个因数的积是0.75和其中一个因数0.5,求另一个因数是多少。或表示0.75是0.5的多少倍。
(二)小数乘除法的计算法则
1. 小数乘法法则:
(1)先按照整数乘法的法则计算;
(2)看因数中一共有几位小数,就从积的右边数出几位,点上小数点。
2. 小数除法法则:
(1)先按照整数除法的法则去除;
(2)商的小数点和被除数的小数点对齐;
(3)除到被除数的末尾仍有余数,就在余数后面添0再继续除。
二、 度量衡
长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:135781012月
小月(30天)的有:46911月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒
代数初步知识
一、用字母表示数
1 用字母表示数的意义和作用
2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式
(1)常见的数量关系
路程用s表示,速度v用表示,时间用t表示,三者之间的关系:
s=vt v=s/t t=s/v
总价用a表示,单价用b表示,数量用c表示,三者之间的关系:
a=bc b=a/c c=a/b
(2)运算定律和性质
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
减法的性质:a-(b+c) =a-b-c
(3)用字母表示几何形体的公式
长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。 c=2(a+b) s=ab
正方形的边长a用表示,周长用c表示,面积用s表示。 c=4a s=a2
平行四边形的底a用表示,高用h表示,面积用s表示。 s=ah
三角形的底用a表示,高用h表示,面积用s表示。
s=ah/2
梯形的上底用a表示,下底b用表示,高用h表示, s=(a+b)h/2
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
11、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
12、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
13、圆的面积=圆周率×半径×半径
(二)分数和百分数的应用
1、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
2、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。
特征:已知单位“1”的量和分率,求与分率所对应的实际数量。
解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。
3、分数除法应用题:
(1)求一个数是另一个数的几分之几(或百分之几)是多少。
特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。
解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。
甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。
甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式:(甲数减乙数)/乙数或(甲数减乙数)/甲数 。
(2)已知一个数的几分之几(或百分之几 )是多少 ,求这个数。
特征:已知一个实际数量和它相对应的分率,求单位“1”的量。
解题关键:根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际数量。
4、百分率:
发芽率=发芽种子数/试验种子数×100%
小麦的出粉率= 面粉的重量/小麦的重量×100%
产品的合格率=合格的产品数/产品总数×100%
职工的出勤率=实际出勤人数/应出勤人数×100%
5、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。
数量关系:工作总量=工作效率×工作时间
工作效率=工作总量÷工作时间
工作时间=工作总量÷工作效率
工作总量÷工作效率和=合作时间
数学六年级学习方法
首先:课前复习。就是上课前花两三分钟把书本本节课要学的内容看一遍。仅仅是看一遍,过一遍。这样上课老师讲自己不但可以跟上老师节奏还可以再次巩固。其余不要干其他多余的事。
其次:上课时候一定要专心听讲,如果觉得老师这里讲得都懂了的话可以自己翻书看后面的内容。做习题的时候一定要一道一道往过做,不要越题做。因为对于课本来说这些都是基础,只有基础完全掌握后才能做难题。上课过程中第一次接触到的知识点概念等,一定一定要当堂背过。不然以后很难背过,不要妄想考前抱佛教再背
另外要把笔记记准确,知道自己需要记什么不需要记什么,憋一个劲地往书上搬。字不要求整齐,自己能看懂就行。课本资料书上有例题,多看多记方法。先看课本基础,在看资料书上着重的。例题的方法一定一定要理解,不要去背!接着下课再看笔记,只是略微巩固记住。
数学六年级学习技巧
养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。学生们不得不预习课本。我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。同时,在课堂上安排笔记也是必要的。在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。
六年级上册数学知识点5
1、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
3、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4、分数乘整数:数形结合、转化化归
5、倒数:乘积是1的两个数叫做互为倒数。
6、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
8、小数的倒数:
普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1
9、用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
10、分数除法:分数除法是分数乘法的逆运算。
11、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13、分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个。
15、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。
比表示两个数相除;只有两个项:比的`前项和后项。
比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
六年级上册数学知识点6
扇形统计图
一、扇形统计图的意义:
用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。
也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:
1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
三、扇形的面积大小:
在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)
针对练习:
一、我国国土总面积是960万平方千米。下面是我国地形分布情况统计图,请根据统计图回答问题。
1、我国山地面积占总面积的百分之几?
2、各类地形中,什么地形面积?什么最小?
3、你还能得到哪些信息?
4、请算出各类地形的实际面积,填入下表。
地形种类山地丘陵高原盆地平原
面积(万平方千米)
二、小军家2012年11月支出情况统计如下图。聪聪家2012年11月的总支出是3600元。请你回答问题。
1、这个月哪项出最多?支出了多少元?
2、文化教育支出了多少元?购买衣物支出了多少元?
3、购买衣物的支出比文化教育支出少百分之几?
4、你还能提出什么问题?并解决你所提出的问题?
六年级上册数学知识点7
一、分数乘法
(一)分数乘法的意义和计算法则
1、分数乘整数的意义
2/11×3 表示: 求3个2/11是多少? 求2/11的3倍是多少?
2、分数乘整数的计算方法
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(能约分的要先约分再乘)
3、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。
4、分数乘分数的的计算方法
分数乘分数,用分子乘分子,分母乘分母。(能约分的要先约分再乘)
(二)求一个数的几分之几是多少的问题
1、找单位“1”的方法
(1)是谁的几分之几,就把谁看作单位“1”。
(2)一般把“比”字、“是”字、“占”字、“相当于”后面的量看作单位“1”。
注意: 找单位“1”在分率句里找,有分率的句子称为分率句。
分率不带单位,具体数量带有单位。
2、求一个数的几倍、几分之几是多少,用乘法计算。
15的3/5是多少? 15×3/5=9
3、已知单位“1”用乘法计算
单位“1”×分率=分率的对应量
注意:(1) 乘上什么样的分率就等于什么样的数量。
(2) 乘上谁占的分率就等于谁的数量。
(3) 是谁的几分之几,就用谁乘上几分之几。
4、已知A比B多(或少)几分之几,求A的解题方法
5、积与因数的大小关系
大于1的数,积大于A。
A(0除外)乘上
小于1的数,积小于A。
二、位置与方向
1、确定物体的位置:(上北下南,左西右东)
(1)北偏东30°就是从北向东移,夹角靠北。
(2)东偏北30°就是从东向北移,夹角靠东。
2、物体位置的相对性
(1)两地的位置关系是相对的,方向刚好相反,距离是一样的。
例如:少年宫在学校南偏东35°的方向上,相距250米,(在学校是以学校为观测点)
南对北 东对西
则学校在少年宫北偏西35°的方向上,相距250米。(在少年宫是以少年宫为观测点)
三、分数除法
(一)倒数的认识
1、倒数的意义
乘积是1的两个数互为倒数。 (注意:不能单独说某个数是倒数。)
2、求倒数的方法
求一个分数的倒数(0除外),只要把这个分数的分子、分母调换位置。
是带分数的先化成假分数
是小数的先化成分数
整数的倒数:整数是几,它的倒数就是几分之一。
3、 1的倒数是1,0没有倒数。
(三)分数除法
1、分数除法的意义
3/10÷1/10表示:已知两个因数的积是3/10,与其中一个因数是1/10,求另一个因数是多少。
2、分数除法的计算方法
除以一个不等于0的数,等于乘这个数的倒数。
3、被除数与商的大小关系
当除数小于1时,商就大于被除数。(0除外)
当除数大于1时,商就小于被除数。(0除外)
4、分数四则混合运算的运算顺序
(1) 只有“+、-”或只有“×、÷”,从左往右计算。
(2) 有“+、-”,也有“×、÷”,先乘除后加减。
(3) 有( )、[ ]的,先算( )里面的,再算[ ]里面的。
(一)已知一个数的几倍、几分之几是多少,求这个数。用除法计算。
1、已知一个数的几分之几是多少,求这个数的问题
例:甲数是15,甲数是乙数的3/5。乙数是多少? 15÷3/5=25
2、求一个数是另一个数的几倍、几分之几,用除法计算。
方法是:用“是”字前面的数÷“是”字后面的数。
例:1、15是5的几倍? 15÷5=3
2、20是25的几分之几? 20÷25=4/5
3、求一个数比另一个数多(或少)几分之几的解题方法是:
用相差量÷问题“比”字后面的量
例:(1)甲数是25,乙数是20。甲数比乙数多几分之几? (25-20)÷20=1/4
(2) 甲数是25,乙数是20。乙数比甲数少几分之几? (25-20)÷25=1/5
4、求单位“1”用除法计算。
具体量(对应量)÷对应分率=单位“1”
什么样的数量就对应什么样的分率。
什么样的分率就对应什么样的数量。
5、求平均数问题: 总量÷总份数=每份数
注意:求平均每什么就除以什么数。(求每天就除以天数;求每人就除以人数;求每千克就除以千克数;求每米就除以米数……)
6、已知A比B多(或少)几分之几,求B的解题方法:
A÷(1+/-几分之几)=B
7、已知单位“1”用乘法,求单位“1”用除法;
分率比多的就1+,比少的就1-。
8、工程问题
把工作总量看作“1”,工作效率就是1/工作时间。
工作时间=工作量 ÷ 工作效率
要做的工作量 由谁做就除以谁的工作效率
1人的效率=两人的效率和-另1人的效率
六年级上册数学知识点8
一、百分数的意义和写法
(一)、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。
(二)、百分数和分数的主要联系与区别:
联系:都可以表示两个量的倍比关系。
区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;
分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。
②、百分数的分子可以是整数,也可以是小数;
分数的分子不能是小数,只能是除0以外的自然数。
3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。
二、百分数和分数、小数的互化
(一)百分数与小数的互化:
1、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。
2.百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
(二)百分数的和分数的互化
1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。
2、分数化成百分数:
①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。(建议用这种方法)
(三)常见分数小数百分数之间的互化;
三、用百分数解决问题
(一)一般应用题
1、常见的百分率的计算方法:
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
2、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
例如:例如:男生有20人,女生有15人,女生人数占男生人数的百分之几。
列式是:15÷20=15/20=75%
3、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,数量关系式和分数乘法解决问题中的关系式相同:
(1)百分率前是“的”:单位“1”的量×百分率=百分率对应量
(2百分率前是“多或少”的数量关系:
单位“1”的量×(1±百分率)=百分率对应量
4、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。方法与分数的方法相同。
解法:
(1)方程:根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):百分率对应量÷对应百分率=单位“1”的量
5、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;
百分率前是“多或少”的关系式:
(比少):具体量÷ (1-百分率)=单位“1”的量;
例如:大米有50千克,比面粉树少50%,面粉有多少千克。
列式是:50÷(1-50%)
(比多):具体量÷ (1+百分率)=单位“1”的量
例如:工人做110个零件,比原计划多做了10%,原计划做多少个?
列式是:110÷(1+10%)
6、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。
用两个数的相差量÷单位“1”的量=百分之几
即①求一个数比另一个数多百分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为百分数形式。
甲比乙多几分之几的问题,方法A,(甲-乙)÷乙(建议用)
方法B,甲÷乙-100%
例如:老师计划改40本作业,实际改了50本,实际比计划多改了百分之几?
列式是:(50-40)÷40=0.25=25%
②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为百分数形式。
乙比甲少几分之几的问题,方法A,(甲-乙)÷甲(建议用)
方法B,100%-乙÷甲
例如:张三家用了100度电,李四家用了90度电,李四家比张三家少用百分之几?
(100-90)÷100=0.1=10%
说明:多百分之几不等于少百分之几,因为单位一不同。
7、如果甲比乙多或少a%,求乙比甲少或多百分之几,用a%÷(1±a%)
8、求价格先降a%又上升a%后的价格:1×(1-a%)×(1+a%)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。
小学数学四大领域主要内容
数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;
图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;
统计与概率:收集、整理和描述数据,处理数据;
实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。
数学分数加减法知识点
一、分数的意义
1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
二、分数与除法的关系,真分数和假分数
1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
2、真分数和假分数:
①分子比分母小的分数叫做真分数,真分数小于1。
②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
③由整数部分和分数部分组成的分数叫做带分数。
3、假分数与带分数的互化:
①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
三、分数的基本质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
四、分数的大小比较
①同分母分数,分子大的分数就大,分子小的分数就小;
②同分子分数,分母大的分数反而小,分母小的分数反而大。
③异分母分数,先化成同分母分数(分数单位相同),再进行比较。(依据分数的基本性质进行变化)
五、约分(最简分数)
1、最简分数:分子和分母只有公因数1的分数叫做最简分数。
2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。 (并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)
注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。
六、分数和小数的互化:
1、小数化分数:将小数化成分母是10、100、1000…的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。
2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。(一般保留三位小数。)
如果分母只含有2或5的质因数,这个分数能化成有限小数。如果含有2或5以外的质因数,这个分数就不能化成有限小数。
3、分数和小数比较大小:一般把分数变成小数后比较更简便。
七、分数的加法和减法
1、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。
2、分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同。在计算过程,整数的运算律对分数同样适用。
3、同分母分数加、减法:同分母分数相加、减,分母不变,只把分子相加减,计算的结果,能约分的要约成最简分数。
4、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。
六年级上册数学知识点9
百分数
1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。
例如:25%的意义:表示一个数是另一个数的25%。
2.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。
3.小数与百分数互化的规则:
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;(加向右)
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。(去向左)
4.百分数与分数互化的规则:
把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
5、常用的分数、小数及百分数的互化
2(1)=0.5=50%4(1)=0.25=25%
4(3)=0.75=75%5(1)=0.2=20%
5(2)=0.4=40%5(3)=0.6=60%
5(4)=0.8=80%8(1)=0.125=12.5%
8(3)=0.375=37.5%8(5)=0.625=62.5%
8(7)=0.875=87.5%10(1)=0.1=10%
16(1)=0.0625=6.25(1)=0.05=5%
25(1)=0.04=4%40(1)=0.025=2.5%
50(1)=0.02=2%100(1)=0.01=1%
6.百分率公式:求百分率就是求一个数是另一个数的百分之几。(算式要加×100%,包括浓度、利润率)
7.求一个数比另一个数多(或少)百分之几(另一个数是单位“1”)
实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几(甲-乙)÷乙
求乙比甲少百分之几(甲-乙)÷甲
8.求一个数的百分之几是多少
一个数(单位“1”)×百分率
9.已知一个数的百分之几是多少,求这个数?
部分量÷百分率=一个数(单位“1”)
10、浓度问题
溶质(盐)的重量+溶剂(水)的重量=溶液(盐水)的重量
溶质(盐)的重量÷溶液(盐水)的重量×100%=浓度
溶液(盐水)的重量×浓度=溶质(盐)的重量
溶质(盐)的重量÷浓度=溶液(盐水)的重量
最常用的是用方程解浓度问题
比如两种不同浓度的溶液混合,最常用的数量关系是
甲溶液质量×甲的浓度+乙溶液质量×乙的浓度
=总溶液质量×总的浓度
11.折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。
“八折”的含义是:现价是原价的80%;“八五折”的含义是:现价是原价的85%
公式:现价=原价×折数(通常写成百分数形式)
利润=售价-成本
利润率=成本(利润)×100%
成数:表示一个数是另一个数十分之几的数,叫做成数。例如,今年的粮食产量比去年增产“二成”。“二成”即是十分之二,也就是今年的粮食产量比去年增加了20%。
12.纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。国家用收来的税款发展经济、科技、教育、文化和国防安全。纳税的种类:将纳税主要分为增值税、消费税、营业税、个人所得税等几类。
13.应纳税额:缴纳的税款叫应纳税额。
14.税率:应纳税额与各种收入的比率叫做税率。
15.应纳税额的计算:应纳税额=各种收入×税率
例如:一家饭店十月份的营业额约是30万元,如果安营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税多少万元?
16.储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
17.存款的类型:存款分为活期、整存整取、零存整取等方式。
18.本金:存入银行的钱叫做本金。
19.利息:取款时银行多支付的钱叫做利息。本息:本金与利息的总和叫做本息。
20.国家规定,存款的利息要按5%(根据题目要求数据计算)的税率纳税。国债的利息不纳税。
21.利率:利息与本金的比值叫做利率。
22.银行存款税后利息的计算公式:利息=本金×利率×时间×(1-5%)
23.银行存款利息的税金=利息×5% 或 =本金×利率×时间×5%
六年级上册数学知识点10
1、理解比例的意义和基本性质,会解比例。
2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4、解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
7、比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:
8、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。
9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
10、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
11、正比例和反比例:
(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)
例如:
①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④y=5x,y和x成正比例,因为:y÷x=5(一定)。
⑤每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。
(2)成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定)
例如:
①路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。
②总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。
③长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。
④40÷x=y,x和y成反比例,因为:x×y=40(一定)。
⑤煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。
12、图上距离:实际距离=比例尺;
例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:200000。
13、实际距离=图上距离÷比例尺;
例如:已知图上距离2cm和比例尺,则实际距离为:2÷1/200000=400000cm=4km。
14、图上距离=实际距离×比例尺;
例如:已知实际距离4km和比例尺1:200000,则图上距离为:400000×1/200000=2(cm)
1、根据方向和距离可以确定物体在平面图上的位置。
2、在平面图上标出物体位置的方法:
先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。
3、描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。
4、绘制路线图的方法:
(1)确定方向标和单位长度。
(2)确定起点的位置。
(3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。
(4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。
六年级上册数学知识点11
(一)、比的意义
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
例如15:10=15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)
15∶10=3/2
前项比号后项比值
3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。
也可以表示两个不同量的比,得到一个新量。例:路程÷速度=时间。
4、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系:
比前项比号“:”后项比值
除法被除数除号“÷”除数商
分数分子分数线“—”分母分数值
7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
10、求比值:用前项除以后项,结果是写为分数(不会约分的就不约分)
例如:15∶10=15÷10=15/10=3/2
(二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4、化简比:
(2)用求比值的方法。注意:最后结果要写成比的形式。
例如:15∶10=15÷10=15/10=3/2=3∶2
还可以15∶10=15÷10=3/2最简整数比是3∶2
5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。
6。按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法
1,用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?
1+4=5糖占1/5用25×1/5得到糖的数量,水占4/5用25×4/5得到水的数量。
2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?
糖和水的份数一共有1+4=5一份就是25÷5=5糖有1份就是5×1水有4分就是5×4
小学数学新课标的基本理念
1、义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。
2、数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
3、学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
小学数学广角知识点
1、数不仅可以用来表示数量和顺序,还可以用来编码。
2、邮政编码:由6位组成,前2位表示省(直辖市、自治区),前3位表示邮区,前4位表示县(市),最后2位表示投递局(所)。
3、身份证号码:由18位组成。
(1)前1、2位数字表示:所在省份的代码;
(2)第3、4位数字表示:所在城市的代码;
(3)第5、6位数字表示:所在区县的代码;
(4)第7~14位数字表示:出生年、月、日;
(5)第15、16位数字表示:所在地的派出所的代码;
(6)第17位数字表示性别:奇数表示男性,偶数表示女性;
(7)第18位数字是校检码:用来检验身份证的正确性。校检码可以是0~9的数字,有时也用x表示。
六年级上册数学知识点12
一、扇形统计图的意义:
用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。
也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:
1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
三、扇形的面积大小:
在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)
四统计图:复式折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况。
小学数学图形的变换知识点
1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:
①对称点到对称轴的距离相等;
②对称点的连线与对称轴垂直;
③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:
①旋转中心;
②旋转方向;
③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。
六年级数学必考难题整理
1、圆柱侧面积
王师傅用面积是9.42平方分米的铁皮做成了一个长2分米的烟囱(接头处忽略不计)则,这个烟囱的横截面的直径是多少?
解:横截面的周长:9.42/2=4.71(分米)
横截面的直径:4.71/3.14=1.5(分米)
答:这个烟囱的横截面的直径是1.5分米。
2、计算整除
只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。
解:逆向思考:因为225=25×9,且25和9互质,所以,只要修改后的数能分别被25和9整除,这个数就能被225整除。我们来分别考察能被25和9整除的情形。由能被25整除的数的特征(末两位数能被25整除)知,修改后的六位数的末两位数可能是25,或75。再据能被9整除的数的特征(各位上的数字之和能被9整除)检验,得9+7+0+4+5=25,25+2=27,25+7=32。故知,修改后的六位数是970425。
3、路程问题
车队向灾区运送一批救灾物资,去时每小时行80km,5小时到达灾区。回来时每小时行100km,这支车队要多长时间能够返回出发地?
解:80×5÷100=400÷100=4(小时)
答:这支车队要四个小时能够返回出发地。
【六年级上册数学知识点】上海花千坊相关的文章:
数学上册知识点08-02
六年级上册数学方程知识点02-29
六年级数学上册知识点11-21
六年级数学上册的知识点11-23
六年级上册数学知识点12-02
六年级上册苏教版数学方程知识点01-27
数学六年级上册圆的比例知识点02-18
数学六年级上册分数除法知识点11-17
数学上册实数的知识点归纳01-19
初三数学上册知识点11-16